电气工程学报 ›› 2024, Vol. 19 ›› Issue (1): 358-370.doi: 10.11985/2024.01.039
收稿日期:
2023-03-20
修回日期:
2023-07-22
出版日期:
2024-03-25
发布日期:
2024-04-25
作者简介:
李进,男,1988年生,博士,副教授。主要研究方向为电力设备绝缘失效机理、高性能电工绝缘材料、无损检测。E-mail:lijin@tju.edu.cn;基金资助:
LI Jin(), KONG Xiaoxiao(
), DU Boxue(
)
Received:
2023-03-20
Revised:
2023-07-22
Online:
2024-03-25
Published:
2024-04-25
摘要:
酸酐固化双酚-A环氧树脂由于其优异的绝缘、热学以及机械性能,被广泛应用于电气设备的支撑、绝缘和密封等关键部件。然而极端运行环境与紧凑化设计趋势下,环氧树脂绝缘经常发生过热和击穿故障,严重威胁电气设备的安全稳定运行。以环氧树脂体系原料混合比、固化时间与温度组合为核心的固化制度是决定环氧树脂微观结构的关键因素,也直接影响其宏观性能。本文介绍了酸酐固化双酚-A环氧树脂固化动力学模型的演变过程,研究结果表明双酚-A环氧树脂/酸酐体系需考虑前后固化过程分阶段拟合其动力学参数。基于不同的混合比以及固化时间和温度组合,重点论述了固化制度对双酚-A环氧树脂/酸酐体系绝缘性能的影响规律,讨论了固化状态相关微观结构对绝缘性能的调控机制。相关研究结果有望为高端电工环氧树脂应用提供配方选型和工艺优化等方面的参考。
中图分类号:
李进, 孔晓晓, 杜伯学. 固化制度调控双酚A环氧树脂/酸酐体系绝缘性能的研究进展*[J]. 电气工程学报, 2024, 19(1): 358-370.
LI Jin, KONG Xiaoxiao, DU Boxue. Research Progress on Curing Regime Modulating Insulation Performances of Bisphenol-A Epoxy Resin/Anhydride System[J]. Journal of Electrical Engineering, 2024, 19(1): 358-370.
表1
基础及改性双酚-A环氧树脂基本性能参数"
分类 | 性能参数 |
---|---|
高压电工装备用超高纯双酚A环氧树脂 | 环氧值(eq/100 g):0.55~0.58;可水解氯(×10-6)<300;氯离子(×10-6)<5;黏度(mPa·s@25 ℃)<10 000 |
电工浇注环氧树脂(饱和 电抗器) | 环氧值(eq/100 g):0.50~0.53;黏度(mPa·s@25 ℃)14 000~18 000 |
电工浸渍环氧树脂(绝缘 拉杆/套管) | 环氧值(eq/100 g):0.58~0.60;黏度(mPa·s@25 ℃)900~1 200 |
电工浇注环氧树脂(高频 变压器) | 环氧值(eq/100 g):0.50~0.53;黏度(mPa·s@25 ℃)10 000~15 000 |
[1] | 冉昭玉, 杜伯学, 李进, 等. 环氧复合材料表面电位衰减与直流电导特性[J]. 电气工程学报, 2018, 13(11):65-70,78. |
RAN Zhaoyu, DU Boxue, LI Jin, et al. Surface potential decay and DC conductivity characteristics of epoxy composites[J]. Journal of Electrical Engineering, 2018, 13(11):65-70,78. | |
[2] | 李进, 赵仁勇, 杜伯学, 等. 电工环氧绝缘件缺陷无损检测方法研究进展[J]. 电工技术学报, 2021, 36(21):4598-4607. |
LI Jin, ZHAO Renyong, DU Boxue, et al. Research progress of nondestructive detection methods for defects of electrical epoxy insulators[J]. Transactions of China Electrotechnical Society, 2021, 36(21):4598-4607. | |
[3] | 崔博源, 王宁华, 王承玉, 等. 特高压气体绝缘金属封闭开关设备用盆式绝缘子的质量控制[J]. 高电压技术, 2014, 40(12):3888-3894. |
CUI Boyuan, WANG Ninghua, WANG Chengyu, et al. Quality control for basin insulator used in gas insulated metal enclosed switchgear of ultra high voltage[J]. High Voltage Engineering, 2014, 40(12):3888-3894. | |
[4] | 李进, 王禹淮, 张黎明, 等. 抛光方式对交流电压下盆式绝缘子表面电荷分布和沿面闪络特性的影响[J]. 高电压技术, 2022, 48(10):4093-4101. |
LI Jin, WANG Yuhuai, ZHANG Liming, et al. Influence of polishing treatments on surface charge distribution and flashover characteristics of basin spacer under AC voltage[J]. High Voltage Engineering, 2022, 48(10):4093-4101. | |
[5] | 王浩然, 陈允, 吴泽华, 等. 断路器绝缘拉杆动态性能模拟试验[J]. 电工技术学报, 2021, 36(S1):311-320. |
WANG Haoran, CHEN Yun, WU Zehua, et al. Dynamic characteristics test of insulation pull rod for circuit breaker[J]. Transactions of China Electrotechnical Society, 2021, 36(S1):311-320. | |
[6] | 李进, 薛润东, 赵仁勇, 等. 基于声弹效应的芳纶增强环氧复合绝缘材料残余应力检测技术研究[J]. 电工技术学报, 2023, 38(9):2519-2527. |
LI Jin, XUE Rundong, ZHAO Renyong, et al. Residual stress detection technology for aramid fiber reinforced epoxy composites based on acoustic-elastic effect[J]. Transactions of China Electrotechnical Society, 2023, 38(9):2519-2527. | |
[7] | 李进, 赵仁勇, 陈允, 等. 水分含量影响玻璃纤维增强环氧树脂电树枝生长特性研究[J]. 电工技术学报, 2023, 38(5):1166-1176,1189. |
LI Jin, ZHAO Renyong, CHEN Yun, et al. Effects of moisture contents on electrical treeing process in GFRP[J]. Transactions of China Electrotechnical Society, 2023, 38(5):1166-1176,1189. | |
[8] | 宁鑫, 彭宗仁, 冯骅, 等. 特高压直流干式套管用环氧及环氧/皱纹纸复合材料介电特性研究[J]. 中国电机工程学报, 2015, 35(4):995-1001. |
NING Xin, PENG Zongren, FENG Hua, et al. Dielectric properties of epoxy resin and epoxy/crepe paper composites used in the ultra high voltage direct current dry-type bushing[J]. Proceedings of the CSEE, 2015, 35(4):995-1001. | |
[9] |
DU B X, SUN H L, JIANG J P, et al. Temperature-dependent electric field distribution in ±800 kV valve-side bushing insulation for a converter transformer[J]. High Voltage, 2021, 6(1):106-115.
doi: 10.1049/hve2.v6.1 |
[10] | 王威望, 刘莹, 何杰峰, 等. 高压大容量电力电子变压器中高频变压器研究现状和发展趋势[J]. 高电压技术, 2020, 46(10):3362-3373. |
WANG Weiwang, LIU Ying, HE Jiefeng, et al. Research status and development of high frequency transformer used in high voltage and large capacity power electronic transformer[J]. High Voltage Engineering, 2020, 46(10):3362-3373. | |
[11] | 何愈, 何俊凌, 赵玉顺, 等. 特高压电气设备用高性能复合绝缘材料配方的研制[J]. 热固性树脂, 2020, 35(6):54-61. |
HE Yu, HE Junling, ZHAO Yushun, et al. Development of high performance composite insulating material formula for UHV electrical equipment[J]. Thermosetting Resin, 2020, 35(6):54-61. | |
[12] | 郝留成, 袁端鹏, 陈蕊, 等. 复配固化剂对环氧树脂体系特性影响的分子动力学模拟[J]. 绝缘材料, 2021, 54(1):73-77. |
HAO Liucheng, YUAN Duanpeng, CHEN Rui, et al. Molecular dynamics simulation on effect of compound curing agent on properties of epoxy resin system[J]. Insulating Materials, 2021, 54(1):73-77. | |
[13] | 王琨, 杨威, 王丽媛, 等. 低黏度双酚A型环氧树脂的制备[J]. 塑料科技, 2022, 50(8):55-59. |
WANG Kun, YANG Wei, WANG Liyuan, et al. Preparation of bisphenol A epoxy resin with low viscosity[J]. Plastics Science and Technology, 2022, 50(8):55-59. | |
[14] | 郭鹏翔. 固化制度对环氧树脂-酸酐体系绝缘性能的影响研究[D]. 天津: 天津大学, 2022. |
GUO Pengxiang. Study on the effects of curing regime on the insulation properties of epoxy-anhydride systems[D]. Tianjin:Tianjin Unviersity, 2022. | |
[15] | 李进, 梁虎成, 杜伯学. 气体绝缘直流设备气固界面电场分布特性与调控方法研究进展[J]. 高电压技术, 2019, 45(8):2619-2628. |
LI Jin, LIANG Hucheng, DU Boxue. Progress in electrical field distribution along gas-solid interface in compact gas insulated system and its regulation methods[J]. High Voltage Engineering, 2019, 45(8):2619-2628. | |
[16] |
LI J, LIU S T, SONG P X, et al. Solidification dynamics of silicone oil and electric field distribution within outdoor cable terminations subjected to cold environments[J]. IEEE Transactions on Power Delivery, 2022, 37(5):4126-4134.
doi: 10.1109/TPWRD.2022.3144851 |
[17] |
LI J, LIU S T, LIANG H C, et al. Study on non-uniformity and dynamic fracture characteristics of GIL tri-post insulators considering Al2O3 sedimentation[J]. High Voltage, 2023, 8(4):659-667.
doi: 10.1049/hve2.v8.4 |
[18] |
JYOTHI N S, RAMU T S, MANOJ M. Temperature distribution in resin impregnated paper insulation for transformer bushings[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3):931-938.
doi: 10.1109/TDEI.2010.5492269 |
[19] |
TENG C, ZHOU Y, LI S, et al. Regulation of temperature resistivity characteristics of insulating epoxy composite by incorporating positive temperature coefficient material[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2):512-520.
doi: 10.1109/TDEI.94 |
[20] |
TANG Y, ZHANG P, ZHU M, et al. Temperature effects on the dielectric properties and breakdown performance of h-BN/epoxy composites[J]. Materials, 2019, 12(24):4112.
doi: 10.3390/ma12244112 |
[21] |
IMAI T, SAWA F, OZAKI T, et al. Influence of temperature on mechanical and insulation properties of epoxy-layered silicate nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(2):445-452.
doi: 10.1109/TDEI.2006.1624291 |
[22] |
BENGTSSON T, DIJKHUIZEN F, MING L, et al. Repetitive fast voltage stresses-causes and effects[J]. IEEE Electrical Insulation Magazine, 2009, 25(4):26-39.
doi: 10.1109/MEI.2009.5191414 |
[23] | 李庆民, 刘伟杰, 韩帅, 等. 环氧树脂绝缘高频电热联合老化中局部放电特性分析[J]. 高电压技术, 2015, 41(2):389-395. |
LI Qingmin, LIU Weijie, HAN Shuai, et al. Analysis on partial discharge characteristics of epoxy resin insulation during high-frequency electrical-thermal aging[J]. High Voltage Engineering, 2015, 41(2):389-395. | |
[24] | 杜伯学, 张莹, 孔晓晓, 等. 环氧树脂绝缘电树枝劣化研究进展[J]. 电工技术学报, 2022, 37(5):1128-1135,1157. |
DU Boxue, ZHANG Ying, KONG Xiaoxiao, et al. Research progress on electrical tree in epoxy resin insulation[J]. Transactions of China Electrotechnical Society, 2022, 37(5):1128-1135,1157. | |
[25] |
LI J, AUNG H H, DU B X. Curing regime-modulating insulation performance of anhydride-cured epoxy resin:A review[J]. Molecules, 2023, 28(2):547.
doi: 10.3390/molecules28020547 |
[26] | KIM H, CHAR K. Dielectric changes during the curing of epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) with diamine[J]. Bulletin of the Korean Chemical Society, 1999, 20(11):1329-1334. |
[27] |
HASSAN M K, TUCKER S J, ABUKMAIL A, et al. Polymer chain dynamics in epoxy based composites as investigated by broadband dielectric spectroscopy[J]. Arabian Journal of Chemistry, 2016, 9(2):305-315.
doi: 10.1016/j.arabjc.2015.07.016 |
[28] | THAKUR Y, DONG R, LIN M, et al. Optimizing nanostructure to achieve high dielectric response with low loss in strongly dipolar polymers[J]. Nano Energy, 2015,16:227-234. |
[29] | 张镱议, 李杭东, 郑明胜, 等. 聚酰亚胺复合电介质材料绝缘击穿特性研究进展[J]. 高电压技术, 2022, 48(11):4264-4274. |
ZHANG Yiyi, LI Hangdong, ZHENG Mingsheng, et al. Research progress in insulation breakdown characteristics of polyimide composite dielectrics[J]. High Voltage Engineering, 2022, 48(11):4264-4274. | |
[30] | 李进, 王雨帆, 杜伯学, 等. 高压电工装备用环氧树脂绝缘材料改性研究进展[J]. 广东电力, 2019, 32(12):3-11. |
LI Jin, WANG Yufan, DU Boxue, et al. Modification research progress of epoxy resin insulation materials for high voltage electrical apparatus[J]. Guangdong Electric Power, 2019, 32(12):3-11. | |
[31] | 周文英, 张帆, 汪旭, 等. EHTPB液体橡胶改性环氧树脂研究[J]. 现代塑料加工应用, 2020, 32(5):4-7. |
ZHOU Wenying, ZHANG Fan, WANG Xu, et al. Modification of epoxy resin with epoxidized hydroxyl terminated polybutadiene liquid rubber[J]. Modern Plastics Processing and Applications, 2020, 32(5):4-7. | |
[32] | JANG I, SHIN K, YANG I, et al. Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2017,518:64-72. |
[33] | HONG Z, DANG Z, ZHA J, et al. Dielectric properties of silica hollow spheres/epoxy nanocomposites[C]// 10th International Conference on the Properties and Applications of Dielectric Materials,Bangalore,2012:24-28. |
[34] | 李成章. 固化条件对改性环氧体系结构与性能的影响研究[D]. 成都: 电子科技大学, 2017. |
LI Chengzhang. Study on the effect of cure conditions on the structure and properties of modified epoxy systems[D]. Chengdu: University of Electronic Science and Technology of China, 2017. | |
[35] | 何元菡. 酸酐分子结构对环氧树脂—酸酐体系绝缘性能影响的研究[D]. 合肥: 合肥工业大学, 2020. |
HE Yuanhan. Study on the molecular structure of acid anhydride on the insulation performance in epoxy resin-anhydride system[D]. Hefei: Hefei University of Technology, 2020. | |
[36] | 郭鹏翔, 李进, 孔晓晓, 等. 混合酸酐固化双酚A环氧树脂介电性能研究[J]. 绝缘材料, 2022, 55(6):16-21. |
GUO Pengxiang, LI Jin, KONG Xiaoxiao, et al. Study on dielectric properties of bisphenol-A epoxy resin cured with mixed anhydride[J]. Insulating Materials, 2022, 55(6):16-21. | |
[37] |
KUMAR V. Role of accelerator in curing of epoxy-anhydride pressure impregnant[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3):968-972.
doi: 10.1109/TDEI.2012.6215101 |
[38] | KOLAR F, SVITILOVA J. Kinetics and mechanism of curing epoxy/anhydride systems[J]. Acta Geodynamica et Geomaterialia, 2007, 4(3):85-92. |
[39] |
LI J, GUO P X, KONG X X, et al. Curing degree dependence of dielectric properties of bisphenol-A based epoxy resin cured with methyl hexahydrophthalic anhydride[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(6):2072-2079.
doi: 10.1109/TDEI.2022.3212970 |
[40] |
FISCH W, HOFMANN W. Über den härtungsmechanismus der äthoxylinharze[J]. Journal of Polymer Science, 1954, 12(1):497-502.
doi: 10.1002/pol.12.v12:1 |
[41] | SAEEDI I A, ANDRITSCH T, VAUGHAN A S, et al. The influence of the molecular architecture on the thermal and the dielectric properties of epoxy resin networks[C]// 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM),Xi’an,2018:328-331. |
[42] |
ZHAO W, AN L, WANG S. Recyclable high-performance epoxy-anhydride resins with DMP-30 as the catalyst of transesterification reactions[J]. Polymers, 2021, 13(2):296.
doi: 10.3390/polym13020296 |
[43] |
LI J, GUO P X, KONG X X, et al. Curing kinetics and dielectric properties of anhydride cured epoxy resin with different accelerator contents[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(1):20-30.
doi: 10.1109/TDEI.2022.3224894 |
[44] |
YU H, TONG Z, CHEN P, et al. Effects of different parameters on thermal and mechanical properties of aminated graphene/epoxy nanocomposites connected by covalent:A molecular dynamics study[J]. Current Applied Physics, 2020, 20(4):510-518.
doi: 10.1016/j.cap.2020.01.011 |
[45] | 付可欣. 高压绝缘用环氧树脂交联网络结构设计与筛选[D]. 北京: 华北电力大学, 2020. |
FU Kexin. Structure design and selection of epoxy resin cross-linked network for high voltage insulation[D]. Beijing: North China Electric Power University, 2020. | |
[46] |
FU K X, XIE Q, LV F C, et al. Molecular dynamics simulation and experimental studies on the thermomechanical properties of epoxy resin with different anhydride curing agents[J]. Polymers, 2019, 11(6):975.
doi: 10.3390/polym11060975 |
[47] | 邵帅, 何俊凌, 余永松, 等. 环氧树脂/酸酐体系热力学特性的分子动力学模拟[J]. 绝缘材料, 2020, 53(8):38-43. |
SHAO Shuai, HE Junling, YU Yongsong, et al. Molecular dynamics simulation on thermomechanical properties of epoxy resin/anhydride system[J]. Insulating Materials, 2020, 53(8):38-43. | |
[48] |
XIE Q, LIANG S, LIU B, et al. Structure,microparameters and properties of crosslinked DGEBA/MTHPA:A molecular dynamics simulation[J]. AIP Advances, 2018, 8(7):075332.
doi: 10.1063/1.5041283 |
[49] | 宋禹泉, 张续, 王娜, 等. 绝缘拉杆用环氧树脂固化动力学研究[J]. 化工新型材料, 2020, 48(9):169-173,178. |
SONG Yuquan, ZHANG Xu, WANG Na, et al. Study on curing kinetics of epoxy resin for insulated tension pole[J]. New Chemical Materials, 2020, 48(9):169-173,178. | |
[50] |
VYAZOVKIN S. Kissinger method in kinetics of materials:Things to beware and be aware of[J]. Molecules, 2020, 25(12):2813.
doi: 10.3390/molecules25122813 |
[51] |
VYAZOVKIN S, SBIRRAZZUOLI N. Isoconversional kinetic analysis of thermally stimulated processes in polymers[J]. Macromolecular Rapid Communications, 2006, 27(18):1515-1532.
doi: 10.1002/marc.v27:18 |
[52] |
BIANCHI Q, OLIVEIRA R V B, FIORIO R, et al. Assessment of Avrami,Ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements[J]. Polymer Testing, 2008, 27(6):722-729.
doi: 10.1016/j.polymertesting.2008.05.003 |
[53] | ZHAO H, XU S, GUO A, et al. The curing kinetics analysis of four epoxy resins using a diamine terminated polyether as curing agent[J]. Thermochimica Acta, 2021,9:178987. |
[54] | 杨威, 张卓, 颜丙越, 等. 环氧树脂固化动力学及促进剂用量对体系的影响[J]. 北京化工大学学报, 2020, 47(1):75-80. |
YANG Wei, ZHANG Zhuo, YAN Bingyue, et al. Kinetics of epoxy resin curing and the effects of varying the amount of accelerator[J]. Journal of Beijing University of Chemical Technology, 2020, 47(1):75-80. | |
[55] |
XU Y, ZHOU S, LIAO G, et al. Curing kinetics of DGEBA epoxy resin modified by poly (phthalazinone ether ketone) (PPEK)[J]. Polymer-Plastics Technology and Engineering, 2012, 51(2):128-133.
doi: 10.1080/03602559.2011.578294 |
[56] | MÁLEK J. The kinetic analysis of non-isothermal data[J]. Thermochimica Acta, 1992,200:257-269. |
[57] |
IMON P. Fourty years of the esták-Berggren equation[J]. Thermochimica Acta, 2011, 520(1-2):156-157.
doi: 10.1016/j.tca.2011.03.030 |
[58] |
SESTÁK J, BERGGREN G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochimica Acta, 1971, 3(1):1-12.
doi: 10.1016/0040-6031(71)85051-7 |
[59] | 毕全瑞, 郝留成, 袁端鹏, 等. 盆式绝缘子用环氧/氧化铝复合体系固化动力学[J]. 高电压技术, 2019, 45(9):2758-2765. |
BI Quanrui, HAO Liucheng, YUAN Duanpeng, et al. Curing kinetics of epoxy/alumina composite system for basin insulator[J]. High Voltage Engineering, 2019, 45(9):2758-2765. | |
[60] |
MA Z, GAO J. Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine[J]. The Journal of Physical Chemistry B, 2006, 110(25):12380-12383.
doi: 10.1021/jp060243z |
[61] | 孙鹤. 具有二阶段固化特征形状记忆环氧固化动力学及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
SUN He. Study on curing kinetics and properties of shape memory epoxy resin with two-stage curing characteristic[D]. Harbin:Harbin Institute of Technology, 2014. | |
[62] |
HARDIS R, JESSOP J, PETERS F E, et al. Cure kinetics characterization and monitoring of an epoxy resin using DSC,Raman Spectroscopy,and DEA[J]. Composites Part A:Applied Science and Manufacturing, 2013, 49(49):100-108.
doi: 10.1016/j.compositesa.2013.01.021 |
[63] |
ARTBAUER J. Electric strength of polymers[J]. Journal of Physics D:Applied Physics, 1999, 29(2):446.
doi: 10.1088/0022-3727/29/2/024 |
[64] |
ALHABILL F N, VAUGHAN A S, ANDRITSCH T. Effect of stoichiometry on AC and DC breakdown of silicon nitride/epoxy nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4):1231-1237.
doi: 10.1109/TDEI.2021.009561 |
[65] |
DO N E, RAMOS A, WINDMOLLER D, et al. Breakdown,free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides[J]. Journal of Materials Science Materials in Electronics, 2016, 27(9):9240-9254.
doi: 10.1007/s10854-016-4962-y |
[66] |
GUO H L, ZHENG J, GAN J Q, et al. Relationship between crosslinking structure and low dielectric constant of hydrophobic epoxies based on substituted biphenyl mesogenic units[J]. RSC Advances, 2015, 5(107):88014-88020.
doi: 10.1039/C5RA16540G |
[67] |
ALHABILL F N, AYOOB R, ANDRITSCH T, et al. Effect of resin/hardener stoichiometry on electrical behavior of epoxy networks[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 24(6):3739-3749.
doi: 10.1109/TDEI.94 |
[68] |
NGUYEN V T, VAUGHAN A S, LEWIN P L, et al. The effect of resin stoichiometry and nanoparticle addition on epoxy/silica nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2):895-905.
doi: 10.1109/TDEI.2015.7076790 |
[69] | VRYONIS O, RIARH S, ANDRITSCH T, et al. Stoichiometry and molecular dynamics of anhydride-cured epoxy resin incorporating octa-glycidyl POSS co-monomer[J]. Polymer, 2020,213:123312. |
[70] |
AMIROVA L R, KHAMIDULLIN O L, ANDRIANOVA K A, et al. Thermal properties of epoxy-anhydride formulations cured using phosphonium accelerators[J]. Polymer Bulletin, 2018, 75(11):5253-5267.
doi: 10.1007/s00289-018-2330-1 |
[71] |
GOU H L, ZHANG B W, WEI W, et al. Triphenylphosphine-containing microcapsules fabricated from pickering emulsions as a thermal latent curing accelerator for an epoxy/anhydride system[J]. Polymer International, 2021, 70 (12):1680-1691.
doi: 10.1002/pi.v70.12 |
[72] |
UZAY C, BOZTEPE M, BAYRAMOĞLU M, et al. Effect of post-curing heat treatment on mechanical properties of fiber reinforced polymer (FRP) composites[J]. Materials Testing, 2017, 59(4):366-372.
doi: 10.3139/120.111001 |
[73] |
GUERRERO P, CABA K, VALEA A, et al. Influence of cure schedule and stoichiometry on the dynamic mechanical behaviour of tetrafunctional epoxy resins cured with anhydrides[J]. Polymer, 1996, 37(11):2195-2200.
doi: 10.1016/0032-3861(96)85865-4 |
[74] | SAEEDI I A, VAUGHAN A S, ANDRITSCH T, et al. The effect of curing conditions on the electrical properties of an epoxy resin[C]// 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP),Toronto,2016:461-464. |
[1] | 李波, 晏宇亮, 刘博, 孙景勇, 张群莉, 弗拉基米尔·科瓦连科, 姚建华. 超音速激光沉积镀铜CNTs/Cu复合涂层微观结构及耐磨损性能[J]. 机械工程学报, 2023, 59(14): 83-91. |
[2] | 冯晓慧, 高飞, 赵阳, 关雪飞, 何晶靖, 林京. 电弧增材再制造低碳钢疲劳性能研究[J]. 机械工程学报, 2023, 59(14): 151-158,168. |
[3] | 孙富建, 肖罡, 蒋志贤, 李时春, 万可谦. 去应力退火工艺对锻造TA7钛合金切削性能的影响[J]. 机械工程学报, 2022, 58(13): 298-306. |
[4] | 赵航, 高畅, 伍晓宇, 徐斌, 雷建国. 超声辅助电火花粉末沉积WC-Ni金属陶瓷涂层的微观结构及摩擦学性能[J]. 机械工程学报, 2021, 57(23): 252-261. |
[5] | 蒋宏婉, 王成勇, 任仲伟, 陈汪林, 何林. 切削过程中高强合金钢浅表层性态强化研究[J]. 机械工程学报, 2021, 57(23): 262-272. |
[6] | 葛福国, 彭倍, 柯文超, 敖三三, 从保强, 祁泽武, 曾志. 电弧增材制造NiTi形状记忆合金成形与性能[J]. 机械工程学报, 2020, 56(8): 99-106. |
[7] | 刘林青, 宋长辉, 杨永强, 翁昌威. 异种材料激光选区熔化界面结构强化机理研究[J]. 机械工程学报, 2020, 56(3): 189-196. |
[8] | 卢海洲, 马宏伟, 罗炫, 杨超, 李元元. 激光扫描速度对4D打印钛镍形状记忆合金相转变和超弹性的影响[J]. 机械工程学报, 2020, 56(15): 65-71. |
[9] | 黄煊杰, 吴丽娟, 李波, 汪伟林, 张群莉, 弗拉基米尔·科瓦连科, 姚建华. 超音速激光沉积WC/Cu复合涂层的微观结构及耐磨性能表征[J]. 机械工程学报, 2020, 56(10): 78-85. |
[10] | 秦瑶,李忠华,孙云龙. 纳米炭黑/XLPE复合绝缘热老化特性试验研究 *[J]. 电气工程学报, 2019, 14(3): 33-40. |
[11] | 王东, 赵军, 曹岩, 薛超. 微纳米复合陶瓷刀具材料计算机辅助设计和制备[J]. 机械工程学报, 2018, 54(7): 223-232. |
[12] | 陈旭斌, 葛翔, 祝毅, 杨华勇. 选择性激光熔化零件微观结构及摩擦学性能研究[J]. 机械工程学报, 2018, 54(3): 63-72. |
[13] | 刘净川, 姜风春, 王立权, 张蒙祺, 运飞宏. Ti-(SiCf/Al3Ti)层状复合材料在侵彻早期阶段基于NEIM的建模与仿真研究[J]. 机械工程学报, 2018, 54(22): 63-77. |
[14] | 刘登俊, 关庆丰, 王志平, 路鹏程, 李娜, 吕鹏. 电热处理对湿热环境作用下碳纤维环氧复合材料的损伤机制[J]. 机械工程学报, 2017, 53(18): 64-70. |
[15] | 徐明秀;陈章华;徐敏强;樊久铭. 疲劳过程中磁记忆信号变化的机理[J]. , 2014, 50(4): 53-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||