[1] |
陈缨, 郭小敏, 黄宇, 等. 基于动态概率潮流的输电网断线风险评估[J]. 中国电力, 2019, 52(5):155-163.
|
|
CHEN Ying, GUO Xiaomin, HUANG Yu, et al. Assessment on line-breakage risk in transmission network based on dynamic probability power flow[J]. Electric Power, 2019, 52(5):155-163.
|
[2] |
王召健, 陈来军, 刘锋, 等. 考虑可控负荷调节能力的多微电网分布式频率控制[J]. 电力系统自动化, 2016, 40(15):47-52.
|
|
WANG Zhaojian, CHEN Laijun, LIU Feng, et al. Distributed frequency control of multi-microgrids with regulation capacity constraints of controllable loads[J]. Automation of Electric Power Systems, 2016, 40(15):47-52.
|
[3] |
张哲, 杨航, 尹项根, 等. 电网运行风险在线评估中基于灵敏度分析的负荷削减模型[J]. 电力自动化设备, 2018, 38(5):90-95.
|
|
ZHANG Zhe, YANG Hang, YIN Xianggen, et al. Load shedding model based on sensitivity analysis in on-line power system operation risk assessment[J]. Electric Power Automation Equipment, 2018, 38(5):90-95.
|
[4] |
张明理, 宋卓然, 梁毅, 等. 基于饱和负荷密度的城市远景空间负荷预测[J]. 沈阳工业大学学报, 2018, 40(1):12-18.
|
|
ZHANG Mingli, SONG Zhuoran, LIANG Yi, et al. Forecasting for urban prospective spatial load based on saturated load density[J]. Journal of Shenyang University of Technology, 2018, 40(1):12-18.
|
[5] |
方陈, 江兴稳, 周健, 等. 含分布式能源区域电网月最大净负荷概率预测[J]. 水电能源科学, 2018, 36(9):197-200.
|
|
FANG Chen, JIANG Xingwen, ZHOU Jian, et al. Probability prediction of monthly net load for regional power grid with distributed energy penetration[J]. Water Resources and Power, 2018, 36(9):197-200.
|
[6] |
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8):191-197.
|
|
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8):191-197.
|
[7] |
蒋正邦, 吴浩, 程祥, 等. 基于多元聚类模型与两阶段聚类修正算法的变电站特性分析[J]. 电力系统自动化, 2018, 42(15):157-163.
|
|
JIANG Zhengbang, WU Hao, CHENG Xiang, et al. Analysis of substation characteristics based on multivariate clustering model and two-stage clustering-correction algorithm[J]. Automation of Electric Power Systems, 2018, 42(15):157-163.
|
[8] |
刘叶, 吴晟, 周海河, 等. 基于K-means聚类算法优化方法的研究[J]. 信息技术, 2019, 43(1):66-70.
|
|
LIU Ye, WU Sheng, ZHOU Haihe, et al. Research on optimization method based on K-means clustering algorithm[J]. Information Technology, 2019, 43(1):66-70.
|
[9] |
薛文, 苏宏升. 基于分群策略的混沌粒子群优化算法[J]. 计算机工程与设计, 2019, 40(2):443-448.
|
|
XUE Wen, SU Hongsheng. Chaotic particle swarm optimization algorithm based on grouping strategy[J]. Computer Engineering and Design, 2019, 40(2):443-448.
|
[10] |
郝晓弘, 刘鹏娟, 汪宁渤. 混沌优化PSO-LSSVM算法的短期负荷预测[J]. 兰州理工大学学报, 2019, 45(1):91-96.
|
|
HAO Xiaohong, LIU Pengjuan, WANG Ningbo. Short-term load forecasting using chaotic optimization PSO-LSSVM algorithm[J]. Journal of Lanzhou University of Technology, 2019, 45(1):91-96.
|
[11] |
闫重熙, 陈皓. 基于改进天牛须搜索算法优化LSSVM短期电力负荷预测方法研究[J]. 电测与仪表, 2020, 57(6):11-16,23.
|
|
YAN Zhongxi, CHEN Hao. Research of LSSVM short-term load forecasting method based on the improved beetle antennae search algorithm[J]. Electrical Measurement & Instrumentation, 2020, 57(6):11-16,23.
|
[12] |
党存禄, 武文成, 李超锋, 等. 基于CatBoost算法的电力短期负荷预测研究[J]. 电气工程学报, 2020, 15(1):76-82.
|
|
DANG Cunlu, WU Wencheng, LI Chaofeng, et al. Short term load forecasting based on CatBoost algorithm[J]. Journal of Electrical Engineering, 2020, 15(1):76-82.
|
[13] |
张彦龙, 翟登辉, 许丹, 等. 基于机器学习的换流站故障分析报告智能分类方法[J]. 电气工程学报, 2019, 14(1):83-88.
|
|
ZHANG Yanlong, ZHAI Denghui, XU Dan, et al. Intelligent classification method of fault analysis report of converter station based on machine learning[J]. Journal of Electrical Engineering, 2019, 14(1):83-88.
|
[14] |
刁守斌, 于涛, 王建建, 等. 基于保留非线性算法的直流配电网潮流计算[J]. 电气工程学报, 2020, 15(4):75-84.
|
|
DIAO Shoubin, YU Tao, WANG Jianjian, et al. Power flow calculation of DC distribution network based on the reserved nonlinear algorithm[J]. Journal of Electrical Engineering, 2020, 15(4):75-84.
|
[15] |
刘升伟, 王星华, 鲁迪, 等. 基于改进高斯过程回归的短期负荷概率区间预测方法[J]. 电力系统保护与控制, 2020, 48(1):24-31.
|
|
LIU Shengwei, WANG Xinghua, LU Di, et al. Electric load probabilistic interval prediction method based on improved Gaussian process regression[J]. Power System Protection and Control, 2020, 48(1):24-31.
|