电气工程学报 ›› 2021, Vol. 16 ›› Issue (2): 2-11.doi: 10.11985/2021.02.002
收稿日期:
2021-04-26
修回日期:
2021-05-17
出版日期:
2021-06-25
发布日期:
2021-08-05
通讯作者:
李忠磊
E-mail:duboxue@tju.edu.cn;lizhonglei@tju.edu.cn
作者简介:
李忠磊,男,1989年生,博士,副教授。主要研究方向为高压交/直流电缆及附件绝缘技术、超导电缆绝缘技术、新型纳米复合电介质。E-mail: lizhonglei@tju.edu.cn基金资助:
DU Boxue(), LI Zhonglei(
), ZHOU Shuofan, FAN Mingsheng
Received:
2021-04-26
Revised:
2021-05-17
Online:
2021-06-25
Published:
2021-08-05
Contact:
LI Zhonglei
E-mail:duboxue@tju.edu.cn;lizhonglei@tju.edu.cn
摘要:
聚丙烯(Polypropylene,PP)绝缘材料具有绝缘性能优良、无需交联、可熔融再利用等优点,是环保型高压直流电缆绝缘的重要发展方向。聚丙烯基绝缘材料存在电气和力学性能难以协同调控的矛盾,是国产高压直流电缆聚丙烯绝缘所面临的主要瓶颈问题。为此从聚丙烯绝缘聚集态结构角度出发,介绍了聚丙烯绝缘聚集态结构及其表征方法,综述了共混与共聚、成核剂添加、结晶温度控制三种调控手段在调控聚丙烯聚集态结构及宏观性能方面的研究进展,论述了不同调控方法对高压直流电缆聚丙烯绝缘电气与力学性能的作用机理。分析表明,β成核剂可抑制聚丙烯绝缘中空间电荷的注入与积聚,提高击穿场强,同时显著提升其抗冲击性能;适当的结晶温度可提升聚丙烯结晶度,控制球晶尺寸,协同提升绝缘电气与力学性能。最后从高压直流电缆的实际运行工况出发,分析并展望了聚丙烯绝缘材料的应用前景与发展方向。
中图分类号:
杜伯学, 李忠磊, 周硕凡, 范铭升. 聚丙烯高压直流电缆绝缘研究进展与展望*[J]. 电气工程学报, 2021, 16(2): 2-11.
DU Boxue, LI Zhonglei, ZHOU Shuofan, FAN Mingsheng. Research Progress and Perspective of Polypropylene-based Insulation for HVDC Cables[J]. Journal of Electrical Engineering, 2021, 16(2): 2-11.
[1] | 李盛涛, 王诗航, 李建英. 高压直流电缆料的研发进展与路径分析[J]. 高电压技术, 2018, 44(5):1399-1411. |
LI Shengtao, WANG Shihang, LI Jianying. Research progress and path analysis of insulating materials used in HVDC cable[J]. High Voltage Engineering, 2018, 44(5):1399-1411. | |
[2] | 钟力生, 任海洋, 曹亮, 等. 挤包绝缘高压直流电缆的发展[J]. 高电压技术, 2017, 43(11):3473-3489. |
ZHONG Lisheng, REN Haiyang, CAO Liang, et al. Development of high voltage direct current extruded cables[J]. High Voltage Engineering, 2017, 43(11):3473-3489. | |
[3] |
ZHOU Y, PENG S M, HU J, et al. Polymeric insulation materials for HVDC cables:Development,challenges and future perspective[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3):1308-1318.
doi: 10.1109/TDEI.2017.006205 |
[4] | HUANG X Y, ZHANG J, JIANG P K, et al. Material progress toward recyclable insulation of power cables. Part 1:Polyethylene-based thermoplastic materials[J]. IEEE Electrical Insulation Magazine, 2019, 35(5):7-19. |
[5] |
LI Z L, DU B X. Polymeric insulation for high-voltage DC extruded cables:Challenges and development directions[J]. IEEE Electrical Insulation Magazine, 2018, 34(6):30-43.
doi: 10.1109/MEI.2018.8507715 |
[6] | 何金良, 彭琳, 周垚. 环保型高压直流电缆绝缘材料研究进展[J]. 高电压技术, 2017, 43(2):337-343. |
HE Jinliang, PENG lin, ZHOU Yao. Research progress of environment-friendly HVDC power cable insulation materials[J]. High Voltage Engineering, 2017, 43(2):337-343. | |
[7] | 黄兴溢, 张军, 江平开. 热塑性电力电缆绝缘材料:历史与发展[J]. 高电压技术, 2018, 44(5):1377-1398. |
HUANG Xingyi, ZHANG Jun, JIANG Pingkai. Thermoplastic insulation materials for power cables:History and progress[J]. High Voltage Engineering, 2018, 44(5):1377-1398. | |
[8] |
MIYASHITA Y, DEMURA T, UEDA A, et al. The application of novel polypropylene to the insulation of electric power cable[J]. IEEJ Transactions on Fundamentals and Materials, 2003, 123(8):797-803.
doi: 10.1541/ieejfms.123.797 |
[9] | YOSHINO K, DEMURA T, KAWAHIGASHI M, et al. Application of a novel polypropylene to the insulation of an electric power cable[J]. Electrical Engineering in Japan, 2004, 146(1):18-26. |
[10] | HOSIER I L, REAUD S, VAUGHAN A S, et al. Morphology,thermal,mechanical and electrical properties of propylene-based materials for cable applications[C]// IEEE International Symposium on Electrical Insulation, 2008:502-505. |
[11] | 徐航, 杜伯学, 李进, 等. 聚丙烯/弹性体复合材料机械与空间电荷特性[J]. 高电压技术, 2019, 45(10):3214-3220. |
XU Hang, DU Boxue, LI Jin, et al. Mechanical and space charge properties of polypropylene/elastomer blends[J]. High Voltage Engineering, 2019, 45(10):3214-3220. | |
[12] |
HOSIER I L, VAUGHAN A S, SWINGLER S G. An investigation of the potential of polypropylene and its blends for use in recyclable high voltage cable insulation systems[J]. Journal of Materials Science, 2011, 46(11):4058-4070.
doi: 10.1007/s10853-011-5335-9 |
[13] | 王灵肖, 刘志芳, 杨桂英, 等. 不同工艺嵌段共聚PP结构与性能研究[J]. 合成树脂及塑料, 2004, 21(1):3634-3644. |
WANG Lingxiao, LIU Zhifang, YANG Guiying, et al. Study on structure and properties of block copolymerized PP by different processes[J]. Synthetic Resins and Plastics, 2004, 21(1):3634-3644. | |
[14] |
HUANG X Y, FAN Y Y, ZHANG J, et al. Polypropylene based thermoplastic polymers for potential recyclable HVDC cable insulation applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3):1446-1456.
doi: 10.1109/TDEI.2017.006230 |
[15] |
DU B X, XU H, LI J, et al. Space charge behaviors of PP/POE/ZnO nanocomposites for HVDC cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5):3165-3174.
doi: 10.1109/TDEI.2016.7736882 |
[16] |
ZHOU Y, DANG B, WANG H M, et al. Polypropylene-based ternary nanocomposites for recyclable high-voltage direct-current cable insulation[J]. Composites Science and Technology, 2018, 165(8):168-174.
doi: 10.1016/j.compscitech.2018.06.022 |
[17] |
DU B X, HOU Z H, LI Z L, et al. Temperature dependent space charge and breakdown strength of PP/ULDPE/graphene nanocomposites for HVDC extruded cable insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3):876-884.
doi: 10.1109/TDEI.94 |
[18] |
GAO Y H, HUANG X Y, MIN D M, et al. Recyclable dielectric polymer nanocomposites with voltage stabilizer interface:Toward new generation of high voltage direct current cable insulation[J]. IEEE Transactions on Electrical Insulation, 1990, 25(3):535-540.
doi: 10.1109/14.55728 |
[19] |
ZHU L W, DU B X, LI Z L, et al. Polycyclic compounds affecting electrical tree growth in polypropylene under ambient temperature[J]. IEEE Access, 2020, 8:8886-8898.
doi: 10.1109/Access.6287639 |
[20] | HUANG X Y, ZHANG J, JIANG P K, et al. Material progress toward recyclable insulation of power cables. Part 2:Polypropylene-based thermoplastic materials[J]. IEEE Electrical Insulation Magazine, 2020, 36(1):8-18. |
[21] |
ZHANG W, XU M, HUANG K W, et al. Effect of β-crystals on the mechanical and electrical properties of β-nucleated isotactic polypropylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3):714-721.
doi: 10.1109/TDEI.94 |
[22] |
NAFFAKH M, MARTÍN Z, MARCO C, et al. Isothermal crystallization kinetics of isotactic polypropylene with inorganic fullerene-like WS2 nanoparticles[J]. Thermochimica Acta, 2008, 472:11-16.
doi: 10.1016/j.tca.2008.03.003 |
[23] |
LIN Y J, DU W C, TU D M, et al. Space charge distribution and crystalline structure in low density polyethylene (LDPE) blended with high density polyethylene (HDPE)[J]. Polymer International, 2005, 54(2):465-470.
doi: 10.1002/(ISSN)1097-0126 |
[24] | LIU X, LIU Y, FANG Y, et al. Improving the impact strength of polypropylene/carbon fiber composites via β- modification and annealing treatment[J]. Polymer Crystallization, 2018, 1(3):10010. |
[25] |
ALDOSARI H. Investigation the phase separation in metallocene linear low density polyethylene/ polypropylene blends[J]. Advanced Materials Research, 2020, 1159:1-18.
doi: 10.4028/www.scientific.net/AMR.1159 |
[26] | GLOGER D, MILEVA D, ZHURAVLEV E, et al. A DSC study of polypropylene chain branching effects on structure formation under rapid cooling and reheating from the amorphous glass[J]. Polymer Crystallization, 2020, 3(6):10142. |
[27] |
DURMUS A, KASGOZ A, ERCAN N, et al. Effect of polyhedral oligomeric silsesquioxane (POSS) reinforced polypropylene (PP) nanocomposite on the microstructure and isothermal crystallization kinetics of polyoxymethylene(POM)[J]. Polymer, 2012, 53(23):5347-5357.
doi: 10.1016/j.polymer.2012.09.026 |
[28] | 朱乐为, 杜伯学. 环境友好型直流电缆料聚丙烯绝缘的电树枝研究进展[J]. 电气工程学报, 2018, 13(11):21-29. |
ZHU Lewei, DU Boxue. Research status on electrical tree of polymer insulation materials in HVDC cables[J]. Journal of Electrical Engineering, 2018, 13(11):21-29. | |
[29] | 许然然, 杜伯学, 肖谧. 高压直流电容器电介质研究现状[J]. 电气工程学报, 2018, 13(11):1-10. |
XU Ranran, DU Boxue, XIAO Mi. Research status on solid dielectric material in HVDC capacitor[J]. Journal of Electrical Engineering, 2018, 13(11):1-10. | |
[30] | 徐涛, 于杰, 金志浩. 聚丙烯聚集态结构与机械性能间关系的研究进展[J]. 高分子材料科学与工程, 2001, 3:6-10. |
XU Tao, YU Jie, JIN Zhihao. Research progress on the relationship between polypropylene aggregate structure and mechanical properties[J]. Polymer Materials Science and Engineering, 2001, 3:6-10. | |
[31] |
ZHAO Y, VAUGHAN A S, SUTTON S J, et al. On the crystallization,morphology and physical properties of a clarified propylene/ethylene copolymer[J]. Polymer, 2001, 42(15):6587-6597.
doi: 10.1016/S0032-3861(01)00031-3 |
[32] | HAYLOCK J C, PHILLIPS R A, WOLKOWICZ M D. Metallocene-based polyolefins:Preparation,properties and technology[M]. Chichester:Wiley, 2000. |
[33] |
LI Z L, ZHONG Z Y, DU B X. Dielectric relaxation and trap-modulated DC breakdown of polypropylene blend insulation[J]. Polymer, 2019, 185(17):121935.
doi: 10.1016/j.polymer.2019.121935 |
[34] |
DANG B, HE J L, HU J, et al. Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline-amorphous interface effect in blends[J]. Polymer International, 2016, 65(4):371-379.
doi: 10.1002/pi.5063 |
[35] | 徐航. 基于聚丙烯的高压直流电缆绝缘改性与空间电荷特性研究[D]. 天津:天津大学, 2017. |
XU Hang. Modification and space charge investigation of polypropylene composites for HVDC cables[D]. Tianjin:Tianjin University, 2017. | |
[36] |
WANG Z G, PHILLIPS R A, HSIAO B S. Morphology development during isothermal crystallization. Part II:Isotactic and syndiotactic polypropylene blends[J]. Journal of Polymer Science Part B:Polymer Physics, 2001, 39(16):1876-1888.
doi: 10.1002/(ISSN)1099-0488 |
[37] | 张伟, 徐曼, 陈光辉, 等. 等规和嵌段聚丙烯的结构和性能[J]. 高电压技术, 2017, 43(11):3634-3644. |
ZHANG Wei, XU Man, CHEN Guanghui, et al. Structure and properties of isotactic polypropylene and ethylene-propylene copolymer[J]. High Voltage Engineering, 2017, 43(11):3634-3644. | |
[38] |
FENG Y, JIN X, HAY J N. Effect of nucleating agent addition on crystallization of isotactic polypropylene[J]. Journal of Applied Polymer Science, 1998, 69(10):2089-2095.
doi: 10.1002/(ISSN)1097-4628 |
[39] |
SMITH T L, MASILAMANI D, BUI L K, et al. The mechanism of action of sugar acetals as nucleating agents for polypropylene[J]. Macromolecules, 1994, 27(12):3147-3155.
doi: 10.1021/ma00090a006 |
[40] | 雷华, 李用军, 吴斌, 等. 不同成核剂对聚丙烯材料结晶形态及性能的影响[J]. 塑料, 2013, 42(3):27-31. |
LEI Hua, LI Yongjun, WU Bin, et al. Effect of different nucleating agent on crystal morphology and properties of PP[J]. Plastics, 2013, 42(3):27-31. | |
[41] |
RAN Z Y, DU B X, XIAO M. Effect of crystallization regulation on the breakdown strength of metallized polypropylene film capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1):175-182.
doi: 10.1109/TDEI.94 |
[42] | ZHANG W, XU M, HE M X, et al. Effect of the β-crystal formation in isotactic polypropylene used for eco-friendly insulating material[C]// International Conference on Electrical Materials and Power Equipment (ICEMPE), 2017,419-423. |
[43] | ZHANG W, XU M, HUANG K, et al. Effect of the ß-crystal formation on electrical properties in propylene-ethylene copolymer[C]// IEEE Electrical Insulation Conference (EIC), 2018,68-71. |
[44] |
WU Y H, ZHA J W, LI W K, et al. A remarkable suppression on space charge in isotatic polypropylene by inducing the β-crystal formation[J]. Applied Physics Letters, 2015, 107(11):112901.
doi: 10.1063/1.4930938 |
[45] | 彭兆伟, 关永刚, 张灵, 等. β成核剂含量对等规聚丙烯电导电流和空间电荷特性的影响[J]. 电工技术学报, 2019, 34(7):1527-1535. |
PENG Zhaowei, GUAN Yonggang, ZHANG Ling, et al. Influence of β-nucleating agent content on conduction current and space charge characteristics in isotactic polypropylene[J]. Transactions of China Electrotechnical Society, 2019, 34(7):1527-1535. | |
[46] |
LI J X, CHE W L, JIA D M. A study on the heat of fusion of β-polypropylene[J]. Polymer, 1999, 40(5):1219-1222.
doi: 10.1016/S0032-3861(98)00345-0 |
[47] |
ZHAO S, XU N, XIN Z, et al. A novel highly efficient β-nucleating agent for isotactic polypropylene[J]. Journal of Applied Polymer Science, 2012, 123(1):108-117.
doi: 10.1002/app.34441 |
[48] | ZHOU Y, HU S X, YUAN C, et al. Recyclable polypropylene-based insulation materials for HVDC cables:Progress and perspective[J]. CSEE Journal of Power and Energy Systems, 2020,DOI: 10.17775/CSEEJPES.2020.04740. |
[49] |
KIM D, YOSHINO K M. Morphological characteristics and electrical conduction in syndiotactic polypropylene[J]. Journal of Physics D:Applied Physics, 2000, 33(4):464-471.
doi: 10.1088/0022-3727/33/4/321 |
[50] | GRADYS A, SAJKIEWICZ P, MINAKOV A A, et al. Crystallization of polypropylene at various cooling rates[J]. Materials Science and Engineering:A, 2005, 413:442-446. |
[51] |
ZHAO W, HUANG Y, LIAO X, et al. The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties[J]. Polymer, 2013, 54(4):1455-1462.
doi: 10.1016/j.polymer.2012.12.073 |
[52] | 姚雪敏. 等规聚丙烯机械性能与球晶结构关系的研究[D]. 天津:天津大学, 2010. |
YAO Xuemin. Study on the relationship between mechanical properties and spherulitic structure of isotactic polypropylene[D]. Tianjin:Tianjin University, 2010. | |
[53] |
KRISHNAKUMAR B, GUPTA R K, FORSTER E O, et al. AC breakdown of melt-crystallized isotactic polypropylene[J]. Journal of Applied Polymer Science, 1988, 35(6):1459-1472.
doi: 10.1002/app.1988.070350605 |
[54] |
CERES B V, SCHULTZ J M. Dependence of electrical breakdown on spherulite size in isotactic polypropylene[J]. Journal of Applied Polymer Science, 1984, 29(12):4183-4197.
doi: 10.1002/app.1984.070291248 |
[55] | SAITO N, IKEZAKI K. Electrical charging characteristics of spherulitic polypropylene[J]. Japanese Journal of Applied Physics,Part 1 (Regular Papers & Short Notes), 1989, 28(3):418-422. |
[56] |
DU B X, XU H, LI J. Effects of mechanical stretching on space charge behaviors of PP/POE blend for HVDC cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3):1438-1445.
doi: 10.1109/TDEI.2017.006116 |
[1] | 杨俊, 杨佳明, 赵新东, 杨旭, 王暄. 混炼工艺对聚丙烯基绝缘材料的力学及电学性能研究*[J]. 电气工程学报, 2021, 16(2): 33-41. |
[2] | 刘畅, 李忠磊, 周硕凡, 范铭升, 杜伯学. 硫代受阻酚复合抗氧剂对聚丙烯直流电缆绝缘空间电荷与直流预压击穿特性的影响*[J]. 电气工程学报, 2021, 16(2): 42-49. |
[3] | 朱乐为,杜伯学. 环境友好型直流电缆料聚丙烯绝缘的电树枝研究进展[J]. 电气工程学报, 2018, 13(11): 21-29. |
[4] | 任世雄;卢涛;党沙沙;王奎升. 聚丙烯水下切粒模板温度场的数值模拟[J]. , 2009, 45(7): 274-277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||