电气工程学报 ›› 2020, Vol. 15 ›› Issue (3): 1-12.doi: 10.11985/2020.03.001
• • 下一篇
收稿日期:
2020-04-16
修回日期:
2020-07-09
出版日期:
2020-09-25
发布日期:
2020-10-28
作者简介:
李笑竹,女,1990年生,博士研究生。主要研究方向为电力系统经济调度。E-mail:基金资助:
Received:
2020-04-16
Revised:
2020-07-09
Online:
2020-09-25
Published:
2020-10-28
摘要:
动态环境经济调度(Dynamic environment economic dispatch, DEED)是电力系统中常见的高纬度、非线性和强耦合的多目标优化问题,以风电为代表的可再生能源大规模并网后使得电力系统动态调度面临一定挑战。在传统的DEED模型中加入应对风电随机性的旋转储备约束,构建了以燃料成本和污染排放为目标,考虑传统发电机阀点效应、网络损耗、爬坡速率和旋转备用要求的DEED模型。基于模型特点,提出一种新型的多目标飞蛾扑火算法(Multi-objective moth-flame optimization, MOMFO),并针对模型复杂约束采用一种动态松弛处理机制。最后以10机测试系统的不同调度方案为例验证了MOMFO在解决此类问题的可行性与有效性。
中图分类号:
李笑竹,王维庆. 基于多目标飞蛾扑火算法的含风电电力系统动态环境经济调度*[J]. 电气工程学报, 2020, 15(3): 1-12.
LI Xiaozhu,WANG Weiqing. Dynamic Environmental Economic Dispatch of Wind Farm Based on Multi-objective Moth-flame Optimization[J]. Journal of Electrical Engineering, 2020, 15(3): 1-12.
表2
多目标优化性能指标对比结果"
函数名 | MOMFO(GD) | MOSADDE(GD) | NSGA-Ⅱ(GD) | SPEA2(GD) | MOPSO(GD) | |||||
---|---|---|---|---|---|---|---|---|---|---|
X-z | IQR | X-z | IQR | X-z | IQR | X-z | IQR | X-z | IQR | |
Fonseca | 2.799×10-4 | 3.874×10-5 | 1.479×10-4 | 1.1×10-5 | 3.116×10-4 | 4.1×10-5 | 2.281×10-4 | 2.6×10-5 | 3.274×10-4 | 5.6×10-4 |
Schaffer | 1.829×10-5 | 1.266×10-6 | 2.356×10-4 | 1.8×10-5 | 2.465×10-4 | 4.9×10-5 | 2.752×10-4 | 9.0×10-5 | 2.443×100 | 5.4×10-4 |
ZDT1 | 1.017×10-4 | 8.620×10-5 | 1.645×10-4 | 6.9×10-5 | 2.196×10-4 | 6.6×10-5 | 1.575×10-3 | 2.1×10-2 | 1.692×10-2 | 1.1×10-2 |
ZDT2 | 9.779×10-5 | 1.282×10-5 | 5.396×10-5 | 9.6×10-6 | 1.687×10-4 | 4.6×10-5 | 4.995×10-3 | 5.4×10-3 | 5.298×10-2 | 4.1×10-2 |
ZDT3 | 1.747×10-4 | 1.754×10-5 | 3.110×10-4 | 4.1×10-5 | 3.532×10-4 | 1.3×10-5 | 1.701×10-3 | 4.2×10-3 | 4.869×10-2 | 9.0×10-3 |
ZDT4 | 1.041×10-5 | 3.340×10-6 | 1.027×10-4 | 6.7×10-5 | 5.185×10-4 | 1.4×10-4 | 1.128×10-1 | 6.5×10-3 | 2.097×10-1 | 2.5×10-1 |
ZDT6 | 2.201×10-2 | 3.863×10-2 | 4.176×10-4 | 1.5×10-5 | 7.943×10-3 | 1.1×10-3 | 1.915×10-3 | 1.6×10-4 | 1.992×10-2 | 5.3×10-2 |
DTLZ2 | 2.081×10-3 | 5.721×10-4 | 5.901×10-4 | 3.3×10-5 | 1.243×10-3 | 2.2×10-4 | 5.183×10-3 | 3.2×10-3 | 1.319×10-2 | 6.3×10-3 |
DTLZ3 | 1.098×10-3 | 9.370×10-5 | 7.368×10-4 | 3.7×10-5 | 4.692×10-3 | 1.6×10-2 | 6.092×10-2 | 9.8×10-2 | 3.652×101 | 5.4×101 |
DTLZ4 | 6.923×10-3 | 1.019×10-3 | 5.364×10-4 | 4.2×10-5 | 1.200×10-3 | 4.1×10-4 | 3.489×10-3 | 3.9×10-3 | 1.063×10-2 | 3.6×10-3 |
函数名 | MOMFO(Δ) | MOSADDE(Δ) | NSGA-Ⅱ(Δ) | SPEA2(Δ) | MOPSO(Δ) | |||||
X-z | IQR | X-z | IQR | X-z | IQR | X-z | IQR | X-z | IQR | |
Fonseca | 1.344×10-3 | 2.296×10-4 | 1.156×10-1 | 1.1×10-2 | 3.769×10-1 | 3.1×10-2 | 1.788×10-1 | 1.3×10-2 | 7.781×10-1 | 3.4×10-1 |
Schaffer | 2.480×10-3 | 3.496×10-4 | 1.408×10-1 | 1.6×10-2 | 2.862×10-1 | 2.5×10-2 | 2.741×10-1 | 2.4×10-2 | 7.373×10-4 | 5.3×10-2 |
ZDT1 | 5.346×10-4 | 5.346×10-4 | 1.325×10-1 | 6.7×10-3 | 5.077×10-1 | 3.0×10-2 | 2.676×10-1 | 1.8×10-1 | 2.949×10-1 | 2.7×10-2 |
ZDT2 | 5.403×10-4 | 1.193×10-4 | 1.256×10-1 | 1.5×10-2 | 4.831×10-1 | 2.3×10-2 | 4.322×10-1 | 3.2×10-1 | 2.851×10-1 | 1.6×10-2 |
ZDT3 | 6.968×10-4 | 6.898×10-5 | 4.627×10-1 | 8.8×10-3 | 5.881×10-1 | 4.8×10-2 | 4.754×10-1 | 6.0×10-2 | 6.150×10-1 | 4.1×10-3 |
ZDT4 | 5.407×10-4 | 9.785×10-5 | 1.169×10-1 | 1.0×10-2 | 3.373×10-1 | 2.3×10-2 | 6.678×10-1 | 6.8×10-1 | 3.145×10-1 | 5.2×10-2 |
ZDT6 | 5.095×10-4 | 1.734×10-2 | 1.332×10-1 | 1.4×10-2 | 4.946×10-1 | 4.4×10-2 | 2.363×10-1 | 2.8×10-1 | 1.156×100 | 1.3×10-1 |
DTLZ2 | 2.029×10-3 | 3.026×10-4 | 6.034×10-1 | 5.0×10-2 | 8.246×10-1 | 8.7×10-2 | 2.413×10-1 | 5.4×10-2 | 7.868×10-1 | 4.0×10-1 |
DTLZ3 | 7.656×10-3 | 1.467×10-3 | 5.870×10-1 | 4.3×10-2 | 8.879×10-1 | 7.3×10-2 | 2.188×10-1 | 5.0×10-2 | — | — |
DTLZ4 | 4.183×10-3 | 6.659×10-4 | 1.594×100 | 3.6×10-1 | 7.749×10-1 | 8.3×10-2 | 2.413×10-1 | 5.6×10-2 | 1.594×100 | 3.7×10-1 |
函数名 | MOMFO(HVR) | MOSADDE(HVR) | NSGA-Ⅱ(HVR) | SPEA2(HVR) | MOPSO(HVR) | |||||
X-z | IQR | X-z | IQR | X-z | IQR | X-z | IQR | X-z | IQR | |
Fonseca | 9.999×10-1 | 2.745×10-6 | 9.980×10-1 | 3.8×10-4 | 9.798×102 | 1.0×10-3 | 9.853×10-1 | 9.4×10-4 | 9.641×10-1 | 3.9×10-2 |
Schaffer | 9.989×10-1 | 5.645×10-5 | 9.973×10-1 | 5.0×10-5 | 9.969×10-1 | 1.3×10-5 | 9.968×10-1 | 1.9×10-4 | 9.967×10-1 | 1.1×10-3 |
ZDT1 | 9.999×10-1 | 2.924×10-6 | 9.971×10-1 | 4.6×10-4 | 9.947×10-1 | 3.2×10-4 | 9.914×10-1 | 9.3×10-4 | 9.423×10-1 | 9.4×10-2 |
ZDT2 | 9.999×10-1 | 5.983×10-6 | 9.951×10-1 | 7.0×10-4 | 9.955×10-1 | 2.4×10-4 | 9.877×10-1 | 4.1×10-3 | 5.616×10-1 | 3.1×10-1 |
ZDT3 | 9.985×10-1 | 2.557×10-5 | 9.979×10-1 | 3.1×10-4 | 9.971×10-1 | 3.0×10-4 | 9.863×10-1 | 4.6×10-3 | 6.278×10-1 | 6.4×10-2 |
ZDT4 | 9.999×10-1 | 6.638×10-6 | 9.995×10-1 | 1.0×10-5 | 9.895×10-1 | 1.4×10-3 | 6.212×10-1 | 2.3×10-1 | 6.879×10-1 | 3.3×10-1 |
ZDT6 | 8.462×10-1 | 1.414×10-4 | 9.994×10-1 | 4.0×10-5 | 8.667×10-1 | 1.8×10-2 | 9.389×10-1 | 7.2×10-3 | 9.496×10-1 | 3.0×10-3 |
DTLZ2 | 9.798×10-1 | 1.277×10-5 | 9.790×10-1 | 2.4×10-3 | 9.591×10-1 | 1.5×10-3 | 9.961×10-1 | 6.4×10-4 | 9.858×10-1 | 8.0×10-3 |
DTLZ3 | 9.395×10-1 | 5.940×10-5 | 9.790×10-1 | 1.5×10-3 | 9.277×10-1 | 1.7×10-1 | 8.610×10-1 | 1.6×10-1 | 0 | 0 |
DTLZ4 | 9.695×10-1 | 4.628×10-5 | 9.794×10-1 | 3.6×10-3 | 9.692×10-1 | 6.5×10-1 | 9.598×10-1 | 6.6×10-2 | 9.319×10-1 | 1.5×10-2 |
表3
MOMFO获得的Case1最佳折中解"
时段 | 出力/MW | 总出力/MW | 总负荷/MW | 网损/MW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
机组1 | 机组2 | 机组3 | 机组4 | 机组5 | 机组6 | 机组7 | 机组8 | 机组9 | 机组10 | ||||
1 | 208.286 8 | 153.743 4 | 87.938 8 | 134.521 7 | 132.493 3 | 96.132 5 | 81.952 2 | 81.232 3 | 67.518 5 | 12.517 8 | 1 056.33 | 1 036 | 20.337 1 |
2 | 158.308 2 | 141.352 1 | 121.862 5 | 139.941 3 | 154.051 5 | 82.707 3 | 111.847 2 | 100.120 8 | 80.000 0 | 42.425 0 | 1 132.61 | 1 110 | 22.616 0 |
3 | 150.000 0 | 210.568 7 | 174.641 3 | 136.440 3 | 201.879 9 | 130.957 5 | 81.847 2 | 90.261 9 | 69.169 1 | 41.490 2 | 1 287.25 | 1 258 | 29.256 0 |
4 | 202.147 6 | 203.093 1 | 185.083 1 | 129.684 9 | 205.761 0 | 180.957 5 | 104.266 5 | 115.417 0 | 76.665 5 | 39.547 0 | 1 442.62 | 1 406 | 36.623 3 |
5 | 204.120 2 | 211.292 3 | 177.730 8 | 168.183 3 | 212.870 7 | 218.220 1 | 107.329 1 | 96.460 7 | 71.577 3 | 52.667 5 | 1 520.45 | 1 480 | 40.452 0 |
6 | 242.281 6 | 225.952 1 | 193.957 0 | 191.885 3 | 230.372 3 | 251.676 7 | 122.802 8 | 109.057 7 | 72.393 3 | 36.880 2 | 1 677.25 | 1 628 | 49.258 9 |
7 | 249.314 8 | 261.332 6 | 240.759 6 | 203.914 4 | 206.650 5 | 221.066 7 | 130.000 0 | 120.000 0 | 79.794 5 | 43.465 4 | 1 756.29 | 1 702 | 54.298 4 |
8 | 205.251 9 | 257.850 1 | 292.158 2 | 216.883 8 | 243.000 0 | 245.915 8 | 127.527 8 | 114.445 0 | 76.408 1 | 55.000 0 | 1 834.44 | 1 776 | 58.440 6 |
9 | 273.392 1 | 289.902 6 | 291.120 4 | 265.840 9 | 242.209 0 | 252.426 1 | 128.152 5 | 119.342 9 | 79.692 8 | 51.716 4 | 1 993.79 | 1 924 | 69.795 6 |
10 | 297.351 7 | 326.621 7 | 326.873 9 | 280.490 0 | 240.583 4 | 256.049 7 | 127.997 7 | 117.747 2 | 77.690 3 | 48.607 7 | 2 100.01 | 2 022 | 78.013 3 |
11 | 324.446 9 | 362.693 7 | 336.622 3 | 292.714 7 | 239.710 2 | 259.848 5 | 128.340 8 | 120.000 0 | 76.897 4 | 50.348 4 | 2 191.62 | 2 106 | 85.623 0 |
12 | 337.018 8 | 388.646 7 | 335.529 1 | 297.798 2 | 241.606 5 | 258.649 5 | 129.115 1 | 118.806 2 | 77.805 4 | 54.920 3 | 2 239.89 | 2 150 | 89.895 8 |
13 | 314.804 4 | 356.536 9 | 315.310 4 | 300.000 0 | 237.991 3 | 258.068 1 | 125.526 4 | 115.625 6 | 78.989 1 | 51.802 9 | 2 154.65 | 2 072 | 82.655 1 |
14 | 290.264 7 | 292.614 3 | 312.749 9 | 263.373 4 | 230.910 3 | 232.307 0 | 124.392 1 | 120.000 0 | 72.664 6 | 55.000 0 | 1 994.27 | 1 924 | 70.276 3 |
15 | 236.030 4 | 226.984 1 | 232.749 9 | 269.343 2 | 234.058 4 | 259.051 3 | 128.134 0 | 115.109 4 | 79.373 3 | 53.473 0 | 1 834.30 | 1 776 | 58.306 9 |
16 | 166.587 2 | 186.486 1 | 254.160 6 | 221.811 3 | 202.780 7 | 228.322 1 | 128.986 0 | 86.178 1 | 67.490 1 | 55.000 0 | 1 597.80 | 1 554 | 43.802 2 |
17 | 160.794 0 | 155.264 0 | 189.395 3 | 219.133 3 | 225.296 7 | 236.951 6 | 117.280 3 | 107.968 3 | 67.651 9 | 39.584 1 | 1 519.31 | 1 480 | 39.319 3 |
18 | 185.509 8 | 220.097 2 | 242.625 0 | 181.025 0 | 239.579 5 | 238.586 8 | 128.060 9 | 119.504 3 | 67.973 3 | 53.585 0 | 1 676.54 | 1 628 | 48.546 8 |
19 | 226.825 6 | 219.634 9 | 269.395 3 | 240.652 4 | 243.000 0 | 258.404 0 | 121.705 3 | 119.539 6 | 80.000 0 | 55.000 0 | 1 834.15 | 1 776 | 58.157 1 |
20 | 268.653 0 | 290.801 8 | 322.391 6 | 280.889 2 | 243.000 0 | 259.866 1 | 129.481 2 | 120.000 0 | 79.656 2 | 50.499 3 | 2 045.23 | 1 972 | 73.238 4 |
21 | 274.061 5 | 295.313 7 | 289.334 4 | 276.912 1 | 240.496 6 | 238.722 9 | 130.000 0 | 120.000 0 | 78.322 1 | 50.747 1 | 1 993.91 | 1 924 | 69.910 5 |
22 | 206.320 0 | 218.698 8 | 249.080 5 | 228.133 8 | 220.951 5 | 208.404 0 | 125.707 8 | 109.269 8 | 64.573 0 | 45.614 3 | 1 676.75 | 1 628 | 48.753 4 |
23 | 158.849 2 | 140.637 7 | 177.216 8 | 197.530 7 | 192.812 9 | 202.698 9 | 96.557 1 | 95.989 1 | 73.134 5 | 28.419 1 | 1 363.84 | 1 332 | 31.846 0 |
24 | 153.472 1 | 141.078 8 | 169.994 9 | 178.708 7 | 173.569 3 | 162.371 3 | 96.229 0 | 79.572 2 | 38.285 9 | 15.930 1 | 1 209.21 | 1 184 | 25.212 4 |
表4
各算法最优折中解的燃料成本、排放对比"
MOMFO | Pro_ NSGA-Ⅱ | MAMODE | IBFA | EMOD EDCH | Pro _PSO | Pro_ MOEA/D | IMOEA/D_ CH | RCGA/ NSGA-Ⅱ | |||
---|---|---|---|---|---|---|---|---|---|---|---|
燃料成本/€ | 2 488 134.68 | 2 555 180.88 | 2 514 113 | 2 517 117 | 2 530 558.94 | 2 508 637.51 | 2 516 800.658 | 2 514 600 | 2 522 600 | ||
污染排放/1b | 286 009.59 | 299 140.86 | 302 742 | 299 037 | 299 124.96 | 296 807.30 | 297 015.14 | 298 360 | 309 940 |
表5
MOMOF获得的Case2最佳折中解"
时段 | 出力/MW | 总出力/MW | 风电场预测/MW | 网损/MW | 总负荷/MW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
机组1 | 机组2 | 机组3 | 机组4 | 机组5 | 机组6 | 机组7 | 机组8 | 机组9 | 机组10 | |||||
1 | 159.77 | 156.31 | 73.00 | 86.21 | 144.76 | 84.19 | 96.39 | 69.94 | 76.31 | 52.23 | 999.11 | 55 | 1 036 | 1 036 |
2 | 166.11 | 163.57 | 124.17 | 127.80 | 106.45 | 128.80 | 81.44 | 89.29 | 64.00 | 29.10 | 1 080.74 | 50 | 1 110 | 1 110 |
3 | 155.80 | 180.54 | 163.25 | 145.95 | 136.04 | 125.16 | 111.22 | 97.45 | 74.60 | 29.05 | 1 219.06 | 65 | 1 258 | 1 258 |
4 | 191.84 | 213.45 | 205.74 | 137.22 | 157.75 | 148.70 | 101.93 | 118.03 | 74.89 | 42.77 | 1 392.31 | 48 | 1 406 | 1 406 |
5 | 203.50 | 185.94 | 188.93 | 183.34 | 207.52 | 194.52 | 97.62 | 120.00 | 47.94 | 50.85 | 1 480.17 | 38 | 1 480 | 1 480 |
6 | 219.98 | 225.84 | 208.06 | 183.17 | 241.62 | 196.20 | 116.57 | 113.72 | 73.69 | 47.46 | 1 626.32 | 48 | 1 628 | 1 628 |
7 | 221.73 | 232.39 | 202.17 | 196.55 | 242.79 | 246.20 | 128.69 | 114.19 | 66.25 | 46.20 | 1 697.16 | 55 | 1 702 | 1 702 |
8 | 220.18 | 223.40 | 227.27 | 234.50 | 243.00 | 255.99 | 129.08 | 117.21 | 77.36 | 55.00 | 1 782.98 | 48 | 1 776 | 1 776 |
9 | 260.13 | 225.48 | 306.06 | 284.23 | 241.49 | 259.98 | 126.18 | 120.00 | 80.00 | 55.00 | 1 958.56 | 32 | 1 924 | 1 924 |
10 | 272.68 | 303.52 | 334.46 | 283.81 | 241.78 | 259.26 | 130.00 | 120.00 | 78.12 | 54.13 | 2 077.76 | 20 | 2 022 | 2 022 |
11 | 337.93 | 326.11 | 318.08 | 295.70 | 242.36 | 258.08 | 128.87 | 111.83 | 77.98 | 51.20 | 2 148.12 | 40 | 2 106 | 2 106 |
12 | 324.28 | 356.08 | 339.46 | 299.72 | 233.27 | 258.32 | 119.64 | 119.80 | 79.75 | 54.82 | 2 185.13 | 50 | 2 150 | 2 150 |
13 | 274.72 | 316.03 | 327.42 | 287.80 | 241.41 | 260.00 | 123.99 | 119.89 | 78.78 | 53.32 | 2 083.35 | 65 | 2 072 | 2 072 |
14 | 275.85 | 236.03 | 254.63 | 296.80 | 234.16 | 255.09 | 127.11 | 111.14 | 71.94 | 53.37 | 1 916.13 | 72 | 1 924 | 1 924 |
15 | 229.78 | 231.97 | 208.24 | 258.17 | 230.67 | 248.22 | 104.12 | 115.24 | 64.99 | 47.26 | 1 738.67 | 90 | 1 776 | 1 776 |
16 | 150.00 | 225.98 | 218.69 | 208.17 | 184.75 | 198.22 | 84.65 | 108.56 | 77.56 | 36.11 | 1 492.69 | 100 | 1 554 | 1 554 |
17 | 150.43 | 257.12 | 150.07 | 158.17 | 186.52 | 183.19 | 111.20 | 117.64 | 78.16 | 38.53 | 1 431.04 | 85 | 1 480 | 1 480 |
18 | 162.54 | 234.03 | 216.09 | 169.09 | 227.85 | 224.43 | 125.67 | 116.72 | 77.17 | 50.98 | 1 604.57 | 68 | 1 628 | 1 628 |
19 | 201.36 | 233.64 | 250.41 | 212.46 | 238.81 | 260.00 | 123.24 | 115.76 | 80.00 | 54.49 | 1 770.17 | 60 | 1 776 | 1 776 |
20 | 275.34 | 284.26 | 276.34 | 248.97 | 241.47 | 259.38 | 130.00 | 120.00 | 79.40 | 55.00 | 1 970.16 | 70 | 1 972 | 1 972 |
21 | 289.26 | 257.48 | 271.54 | 228.49 | 236.81 | 248.64 | 128.68 | 117.55 | 80.00 | 55.00 | 1 913.45 | 75 | 1 924 | 1 924 |
22 | 209.77 | 177.65 | 266.70 | 178.57 | 204.47 | 235.03 | 98.88 | 120.00 | 50.20 | 40.11 | 1 581.38 | 90 | 1 628 | 1 628 |
23 | 161.2 | 135.00 | 198.44 | 184.01 | 164.46 | 209.04 | 68.88 | 90.00 | 48.11 | 21.08 | 1 280.24 | 80 | 1 332 | 1 332 |
24 | 150.24 | 135.04 | 187.62 | 129.58 | 154.47 | 185.03 | 68.88 | 90.00 | 20.22 | 10.12 | 1 131.21 | 75 | 1 184 | 1 184 |
[1] |
ELATTAR E E. Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources[J]. Energy, 2018,159:496-507.
doi: 10.1016/j.energy.2018.06.137 |
[2] |
JUBRIL A M, KOMOLAFE O A, ALAWODE K O. Solving multi-objective economic dispatch problem via semidefinite programming[J]. IEEE Transactions on Power Systems, 2013,28(3):2056-2064.
doi: 10.1109/TPWRS.2013.2245688 |
[3] |
BASU M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II[J]. International Journal of Electrical Power & Energy Systems, 2008,30(2):140-149.
doi: 10.1016/j.ijepes.2007.06.009 |
[4] |
FILATOVAS E, KURASOVA O, SINDHYA K. Synchronous R-NSGA-II:An extended preference-based evolutionary algorithm for multi-objective optimization[J]. Informatica, 2015,26(1):33-50.
doi: 10.15388/Informatica.2015.37 |
[5] |
TSOU C S. Multi-objective inventory planning using MOPSO and TOPSIS[J]. Expert Systems with Applications, 2008,35(1-2):136-142.
doi: 10.1016/j.eswa.2007.06.009 |
[6] | 张吉昂, 王萍, 程泽. 采用混沌粒子群-内点法联合算法的多目标发电调度[J/OL]. 电网技术, 1-11[2020-05-12]. http://kns.cnki.net/kcms/detail/11.2410.tm.20200506.1006.002.html. |
ZHANG Ji’ang, WANG Ping, CHENG Ze. Multi-objective generation scheduling based on Chaos particle swarm optimization and interior point method[J/OL]. Power System Technology, 1-11[2020-05-12]. http://kns.cnki.net/kcms/detail/11.2410.tm.20200506.1006.002.html. | |
[7] | 周生海, 尹航, 顾颖, 等. 基于POP NSGA-Ⅱ的配电网故障恢复重构[J]. 电气工程学报, 2018,13(6):28-35. |
ZHOU Shenghai, YIN Hang, GU Ying, et al. Distribution network fault recovery reconfiguration based on POP NSGA-Ⅱ[J]. Journal of Electrical Engineering, 2018,13(6):28-35. | |
[8] |
JIANG Xingwen. Dynamic environmental economic dispatch using multiobjective differential evolution algorithm with expanded double selection and adaptive random restart[J]. International Journal of Electrical Power & Energy Systems, 2013,49(1):399-407.
doi: 10.1016/j.ijepes.2013.01.009 |
[9] |
LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets,MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2009,13(2):284-302.
doi: 10.1109/TEVC.2008.925798 |
[10] |
LIANG H, LIU Y, SHEN Y, et al. A hybrid bat algorithm for economic dispatch with random wind power[J]. IEEE Transactions on Power Systems, 2018,33(5):5052-5061.
doi: 10.1109/TPWRS.59 |
[11] |
XIE M, XIONG J, KE S, et al. Two-stage compensation algorithm for dynamic economic dispatching considering copula correlation of multi-wind farms generation[J]. IEEE Transactions on Sustainable Energy, 2017,8(2):763-771.
doi: 10.1109/TSTE.2016.2618939 |
[12] |
LI M S, LIN Z J, JI T Y, et al. Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula[J]. Applied Energy, 2018,226:967-978.
doi: 10.1016/j.apenergy.2018.05.128 |
[13] | 茆美琴, 王徐锐. 基于分布式控制的孤岛微网经济调度方法[J]. 电气工程学报, 2018,13(9):8-13. |
MAO Meiqin, WANG Xurui. Economic dispatch method of islanded microgrid based on distributed control[J]. Journal of Electrical Engineering, 2018,13(9):8-13. | |
[14] |
BAHMANI-FIROUZI B, FARJAH E, AZIZIPANAH- ABARGHOOEE R. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties[J]. Energy, 2013,50:232-244.
doi: 10.1016/j.energy.2012.11.017 |
[15] | 朱志键, 王杰. 基于改进NSGA-Ⅱ的电力系统动态环境经济调度[J]. 电力自动化设备, 2017,37(2):176-183. |
ZHU Zhijian, WANG Jie. Power system dynamic environment economic dispatch based on improved NSGA-Ⅱ[J]. Automation of Electric Power Systems, 2017,37(2):176-183. | |
[16] |
BEIRAMI A, VAHIDINASAB V, SHAFIE-KHAH M, et al. Multiobjective ray optimization algorithm as a solution strategy for solving non-convex problems:A power generation scheduling case study[J]. International Journal of Electrical Power & Energy Systems, 2020,119:105967.
doi: 10.1016/j.ijepes.2020.105967 |
[17] | 闫盼盼, 俞海珍, 史旭华, 等. 基于Pareto支配的MPRM电路面积与功耗优化[J]. 计算机工程与科学, 2020,42(4):596-602. |
YAN Panpan, YU Haizhen, SHI Xuhua, et al. Circuit area and power optimization of MPRM based on Pareto domination[J]. Computer Engineering & Science, 2020,42(4):596-602. | |
[18] |
MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge- Based Systems, 2015,89:228-249.
doi: 10.1016/j.knosys.2015.07.006 |
[19] | 张建新, 李昆. 基于滤子拟态物理学算法的多目标优化[J]. 计算机仿真, 2019,36(5):295-299. |
ZHANG Jianxin, LI Kun. Multi objective optimization based on filter mimicry physics algorithm[J]. Computer Simulation, 2019,36(5):295-299. | |
[20] | 呼忠权, 王洪斌. 基于Lévy飞行的自适应差分进化算法[J]. 现代电子技术, 2020,43(4):167-172. |
HU Zhongquan, WANG Hongbin. Adaptive differential evolution algorithm for Lévy flight[J]. Modern Electronics Technique, 2020,43(4):167-172. | |
[21] | 稳国栋. 基于改进PSO算法的动态环境经济调度研究[J]. 黑龙江电力, 2017,39(2):120-124. |
WEN Guodong. Research on dynamic environment economic scheduling based on improved PSO algorithm[J]. Heilongjiang Electric Power, 2017,39(2):120-124. | |
[22] |
WANG Y N, WU L H, YUAN X F. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure[J]. Soft Computing, 2010,14(3):193-209.
doi: 10.1007/s00500-008-0394-9 |
[23] |
朱永胜, 王杰, 瞿博阳, 等. 含风电场的多目标动态环境经济调度[J]. 电网技术, 2015,39(5):1315-1322.
doi: 10.13335/j.1000-3673.pst.2015.05.022 |
ZHU Yongsheng, WANG Jie, QU Boyang, et al. Multi-objective dynamic environment economic dispatch with wind farm[J]. Power System Technology, 2015,39(5):1315-1322.
doi: 10.13335/j.1000-3673.pst.2015.05.022 |
|
[24] | 江兴稳, 周建中, 王浩, 等. 电力系统动态环境经济调度建模与求解[J]. 电网技术, 2013,37(2):385-391. |
JIANG Xingwen, ZHOU Jianzhong, WANG Hao, et al. Modeling and solution of economic dispatch in dynamic environment of power system[J]. Power System Technology, 2013,37(2):385-391. | |
[25] | 乔百豪. 基于进化计算的含风电及电动汽车的电力系统调度研究[D]. 郑州:中原工学院, 2018. |
QIAO Baihao. Research on power system scheduling containing wind power and electric vehicles based on evolutionary computation[D]. Zhengzhou:Zhongyuan University of Technology, 2018. |
[1] | 高本锋,张学伟,李忍. 大规模风电送出系统的次同步振荡问题研究综述[J]. 电气工程学报, 2015, 10(7): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||