Journal of Electrical Engineering ›› 2022, Vol. 17 ›› Issue (1): 86-94.doi: 10.11985/2022.01.012
Special Issue: 特邀专栏:电力电子化配电网关键设备和运行控制
Previous Articles Next Articles
CHEN Cheng1(), PI Zhiyong1(
), ZHAO Yinglong2(
), LIAO Xuan1, ZHANG Mingmin2, LI Yong2
Received:
2021-09-03
Revised:
2021-10-28
Online:
2022-03-25
Published:
2022-05-06
CLC Number:
CHEN Cheng, PI Zhiyong, ZHAO Yinglong, LIAO Xuan, ZHANG Mingmin, LI Yong. State of Charge Estimation with Adaptive Cataclysm Genetic Algorithm-recurrent Neural Network for Li-ion Batteries[J]. Journal of Electrical Engineering, 2022, 17(1): 86-94.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
RNN参数名称 | 参数值 |
---|---|
状态-状态权值 | [ 0.200 2 1.829 1.466, -0.270 1 0.324 2, -0.172 8 -0.888 4 1.295] [0.522 4 -1.576 0.197 5 0.269 1, 0.647 7 -1.912 0.814 8 -1.548] [ 1.937 0.318 9 0.071 07 -1.05 0.712 9 1.26 -0.080 06 -0.021 78] [0.610 6 0.826 7 -0.340 6 -1.0 1.646, -1.293 0.826 3 -1.805] [ 0.401 8 0.327 8 1.096 -1.124 1.637 -1.338 -1.78 1.724] [ 1.68 -1.141 0.616 1 1.515 -1.039, -1.32 -0.253 1 1.066] [0.284 9 0.518 3 0.526 4 -0.519 7, 1.922 0.770 5 0.599 9 0.803] [-0.663 8 -1.078 -1.376 0.288 3, -1.273 -1.171 0.204 7 -0.824 5] |
状态-输出权值 | [1.724, 0.565 1] [-0.702 1, -1.688] [1.837, -1.119] [-1.723, -1.774] [1.467, -1.367] [0.778 6, 0.771 5] [-1.424, 0.975] [0.819 9, 0.227 3] |
状态-输入权值 | [-0.602 7, -1.33, -0.019 56, 1.213, 0.595 4, 0.754 2, 0.652 2, 0.931 7] |
状态阈值 | [ 1.378, 0.500 7, -1.28, 1.109, -1.345, 1.64, -1.695, -0.635 9]T |
输出阈值 | 0.322 5 |
[1] | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 29(7):1-13. |
LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the Chinese Society of Electrical Engineering, 2021, 29(7):1-13. | |
[2] | 李建林, 武亦文, 吕超, 等. 碳达峰背景下退役锂电池梯次利用电热管理技术[J]. 高电压技术, 2021, 29(7):1-16. |
LI Jianlin, WU Yiwen, LÜ Chao, et al. Electro&thermal management technology for cascade utilization of retired lithium batteries under the background of carbon peak[J]. High Voltage Engineering, 2021, 29(7):1-16. | |
[3] | 姜媛媛, 曾文文, 沈静静, 等. 基于凸优化-寿命参数退化机理模型的锂离子电池剩余使用寿命预测[J]. 电力系统及其自动化学报, 2019, 31(3):23-28. |
JIANG Yuanyuan, ZENG Wenwen, SHEN Jingjing, et al. Prediction of remaining useful life of lithium-ion battery based on convex optimization life parameter degradation mechanism model[J]. Proceedings of the CSU-EPSA, 2019, 31(3):23-28. | |
[4] | 赖春艳, 陈宏, 倪嘉茜, 等. 锂离子电池储能技术在电力能源中的应用模式与发展趋势[J]. 上海电力大学学报, 2021, 37(4):380-384. |
LAI Chunyan, CHEN Hong, NI Jiaqian, et al. Application mode and development trend of lithium ion battery energy storage technology in power energy[J]. Journal of Shanghai Electric Power University, 2021, 37(4):380-384. | |
[5] | 杨潇, 王顺利, 徐文华, 等. 基于LM-RLS和渐消因子EKF算法的锂电池SOC估计[J]. 控制工程, 2021, 29(7):1-7. |
YANG Xiao, WANG Shunli, XU Wenhua, et al. SOC estimation of lithium battery based on LM-RLS and fading factor EKF algorithm[J]. Control Engineering, 2021, 29(7):1-7. | |
[6] | 吕甜, 张雪霞. 基于在线参数辨识和ASR-UKF的锂离子电容SOC估计[J]. 电源技术, 2021, 45(1):27-30,55. |
LÜ Tian, ZHANG Xuexia. SOC estimation of lithium-ion capacitor based on online parameter identification and ASR-UKF[J]. Chinese Journal of Power Sources, 2021, 45(1):27-30,55. | |
[7] | 张武, 孙士山, 张家福. 基于自适应无迹卡尔曼滤波的动力电池SOC估计[J]. 电源技术, 2021, 45(1):14-17. |
ZHANG Wu, SUN Shishan, ZHANG Jiafu. SOC estimation of power battery based on adaptive unscented Kalman filter[J]. Chinese Journal of Power Sources, 2021, 45(1):14-17. | |
[8] | 李超然, 肖飞, 樊亚翔, 等. 基于高斯过程回归的锂电池SOC估算方法[J]. 海军工程大学学报, 2021, 33(1):55-59. |
LI Chaoran, XIAO Fei, FAN Yaxiang, et al. Electro&thermal SOC estimation method of lithium battery based on Gaussian process regression[J]. Journal of Navy Engineering University, 2021, 33(1):55-59. | |
[9] | 陈霖华, 陈剑, 徐志强, 等. 基于实时电路模型的储能系统锂离子电池状态估算[J]. 中南大学学报, 2021, 52(2):458-464. |
CHEN Linhua, CHEN Jian, XU Zhiqiang, et al. State estimation of lithium ion battery in energy storage system based on real-time circuit model[J]. Journal of Central South University, 2021, 52(2):458-464. | |
[10] | 孙鹏宇, 李建良, 陶知非, 等. 动态工况电池在线参数辨识及SOC估计研究[J]. 电子测量与仪器学报, 2021, 35(1):10-17. |
SUN Pengyu, LI Jianliang, TAO Zhifei, et al. On-line parameter identification and SOC estimation of battery under dynamic conditions[J]. Journal of Electronic Measurement and Instrument, 2021, 35(1):10-17. | |
[11] | 谈发明, 赵俊杰, 李秋烨. 基于简化滞回OCV模型的锂电池SOC自适应估计策略[J]. 中国电机工程学报, 2021, 41(2):703-715. |
TAN Faming, ZHAO Junjie, LI Qiuye. SOC adaptive estimation strategy of lithium battery based on simplified hysteresis OCV model[J]. Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(2):703-715. | |
[12] | 周娟, 孙啸, 刘凯, 等. 联合扩展卡尔曼滤波的滑模观测器SOC估算算法研究[J]. 中国电机工程学报, 2021, 41(2):692-703. |
ZHOU Juan, SUN Xiao, LIU Kai, et al. Research on SOC estimation algorithm of sliding mode observer combined with extended Kalman filter[J]. Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(2):692-703. | |
[13] | 王晓兰, 靳皓晴, 刘祥远. 基于融合模型的锂离子电池荷电状态在线估计[J]. 工程科学学报, 2020, 42(9):1200-1208. |
WANG Xiaolan, JIN Haoqing, LIU Xiangyuan. Online estimation of charge state of lithium ion battery based on fusion model[J]. Journal of Engineering Science, 2020, 42(9):1200-1208. | |
[14] | 李静, 杨艳, 秦建鑫, 等. 锂电池分数阶建模与荷电状态估计研究[J]. 电源技术, 2020, 44(7):983-985,994. |
LI Jing, YANG Yan, QIN Jianxin, et al. Fractional modeling and state of charge estimation of lithium battery[J]. Chinese Journal of Power Sources, 2020, 44(7):983-985,994. | |
[15] | 秦鹏, 王振新, 康健强, 等. 实时辨识锂离子电池参数并基于改进AEKF估算SOC[J]. 电子测量技术, 2020, 43(10):30-35. |
QIN Peng, WANG Zhenxin, KANG Jianqiang, et al. Real-time identification of lithium ion battery parameters and SOC estimation based on improved AEKF[J]. Electronic Measurement Techniques, 2020, 43(10):30-35. | |
[16] | 孙硕, 孙俊忠, 周智勇, 等. 基于MIV-GA-BP神经网络的铅酸蓄电池SOC预测[J]. 电源技术, 2021, 45(2):228-231. |
SUN Shuo, SUN Junzhong, ZHOU Zhiyong, et al. SOC prediction of lead-acid battery based on MIV-GA-BP neural network[J]. Chinese Journal of Power Sources, 2021, 45(2):228-231. | |
[17] | 姚芳, 张楠, 黄凯. 估算锂电池SOC的基于LM的BP神经网络算法[J]. 电源技术, 2019, 43(9):1453-1457. |
YAO Fang, ZHANG Nan, HUANG Kai. LM-based BP neural network algorithm for estimating SOC of lithium battery[J]. Chinese Journal of Power Sources, 2019, 43(9):1453-1457. | |
[18] | 赵钢, 朱芳欣, 窦汝振. 基于PSO-BP的电动汽车锂离子电池SOC估算[J]. 电源技术, 2018, 42(9):1318-1320. |
ZHAO Gang, ZHU Fangxin, DOU Ruzhen. SOC estimation of electric vehicle lithium-ion battery based on PSO-BP[J]. Chinese Journal of Power Sources, 2018, 42(9):1318-1320. | |
[19] | BOCKRATH S, ROSSKOPF A, KOFFEL S, et al. State of charge estimation using recurrent neural networks with long short-term memory for lithium-ion batteries[C]// IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, 2019, 9(10):2507-2511. |
[20] | YANG Fangfang, LI Weihua, LI Chuan, et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 15(5):66-75. |
[21] | 林海飞, 高帆, 严敏, 等. 煤层瓦斯含量PSO-BP神经网络预测模型及其应用[J]. 中国安全科学学报, 2020, 30(9):80-87. |
LIN Haifei, GAO Fan, YAN Min, et al. PSO-BP neural network prediction model of coal seam gas content and its application[J]. China Safety Science, 2020, 30(9):80-87. | |
[22] | 陈颖, 黄凯, 丁恒, 等. 基于子种群自适应思维进化-BP神经网络的锂离子电池SOC估计[J]. 电源学报, 2021, 29(7):1-15. |
CHEN Ying, HUANG Kai, DING Heng, et al. SOC estimation of lithium ion battery based on subpopulation adaptive thinking evolution-BP neural network[J]. Journal of Power Supply, 2021, 29(7):1-15. | |
[23] | 颜建国, 郑书闽, 郭鹏程, 等. 基于GA-BP神经网络的超临界CO_(2) 传热特性预测研究[J]. 化工学报, 2021, 29(7):1-16. |
YAN Jianguo, ZHENG Shumin, GUO Pengcheng, et al. Prediction of supercritical CO_(2) heat transfer characteristics based on GA-BP neural network[J]. Journal of Chemical Industry and Engineering China, 2021, 29(7):1-16. | |
[24] | 幸火林, 徐安军, 吴双平, 等. 基于改进遗传算法的热轧批量计划优化模型[J]. 中国冶金, 2021, 31(5):47-53. |
XING Huolin, XU Anjun, WU Shuangping, et al. Hot rolling batch planning optimization model based on improved genetic algorithm[J]. China Metallurgy, 2021, 31(5):47-53. | |
[25] |
LIU Yaoyao, ZHANG Yixin, LIU Xiaoya. Application of embedded computer and improved genetic algorithm in the strategy of community of human destiny:The development of artificial intelligence in the context of Covid-19[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 9(4):1-13.
doi: 10.1007/s12652-017-0523-3 |
[26] |
HAMED K, MOHAMMAD M M, MOHAMMAD R, et al. The integrated production-distribution scheduling in parallel machine environment by using improved genetic algorithms[J]. Journal of Industrial and Production Engineering, 2021, 38(3):157-170.
doi: 10.1080/21681015.2020.1848930 |
[27] | 王策, 董兆伟, 孙立辉, 等. 新型灾变自适应遗传算法及其应用[J]. 计算机系统应用, 2019, 28(9):278-283. |
WANG Ce, DONG Zhaowei, SUN Lihui, et al. New catastrophe adaptive genetic algorithm and application[J]. Computer Systems & Applications, 2019, 28(9):278-283. | |
[28] | University of Maryland. Battery research data[EB/OL]. [2021-07-08]. https://calce.umd.edu/data . |
[29] | 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 38611-2020 电动汽车用电池管理系统技术条件[S]. 北京: 中国标准出版社, 2020. |
State Administration for Market Regulation, Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. GB/T 38611-2020 Technical specifications of battery management system for electric vehicles[S]. Beijing: Standards Press of China, 2020. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||