Journal of Electrical Engineering ›› 2022, Vol. 17 ›› Issue (4): 61-71.doi: 10.11985/2022.04.008
Previous Articles Next Articles
WANG Gongquan1(), KONG Depeng1(
), PING Ping2, LÜ Hongpeng1
Received:
2022-08-31
Revised:
2022-09-30
Online:
2022-12-25
Published:
2023-02-03
Contact:
KONG Depeng, E-mail:kongdepeng@upc.edu.cn
CLC Number:
WANG Gongquan, KONG Depeng, PING Ping, LÜ Hongpeng. Thermal Runaway Modeling of Lithium-ion Batteries: A Review[J]. Journal of Electrical Engineering, 2022, 17(4): 61-71.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
反应 | 反应表达式 | 初始条件 |
---|---|---|
SEI膜分解 | $\frac{\mathrm{d}{{c}_{SEI}}}{\mathrm{d}t}=-{{A}_{SEI}}{{c}_{SEI}}\text{exp}\left( -\frac{E{{a}_{SEI}}}{RT} \right)$ | cSEI,0=0.15 |
负极与电解液反应 | $\frac{\mathrm{d}{{c}_{a}}}{\mathrm{d}t}=-{{A}_{a}}{{c}_{a}}\text{exp}\left( -\frac{E{{a}_{a}}}{RT} \right)\text{exp}\left( -\frac{{{c}_{SEI}}}{{{c}_{SEI,ref}}} \right)$ | ca,0=0.75 |
正极与电解液反应 | $\frac{\mathrm{d}{{\alpha }_{c}}}{\mathrm{d}t}={{A}_{c}}{{\alpha }_{c}}\left( 1-{{\alpha }_{c}} \right)\text{exp}\left( -\frac{E{{a}_{c}}}{RT} \right)$ | 〈c,0=0.04 |
内部短路 | $\frac{\mathrm{dSOC}}{\mathrm{d}t}=-{{T}_{ISC}}{{A}_{ec}}\mathrm{SOC}\text{exp}\left( -\frac{E{{a}_{ec}}}{RT} \right)$ | — |
电解液分解 | $\frac{\mathrm{d}{{c}_{e}}}{\mathrm{d}t}=-{{A}_{e}}{{c}_{e}}\text{exp}\left( -\frac{E{{a}_{e}}}{RT} \right)$ | ce,0=1 |
粘结剂分解 | $\frac{\mathrm{d}{{c}_{PVDF}}}{\mathrm{d}t}=-{{A}_{PVDF}}{{c}_{PVDF}}\text{exp}\left( -\frac{E{{a}_{PVDF}}}{RT} \right)$ | cPVDF,0=1 |
"
电池 材料 | A/s-1 | Ea/(J/mol) | H/(J/kg) | W/(kg/m3) | |
---|---|---|---|---|---|
SEI膜 | 1.667×1015 | 1.3508×105 | 2.57×105 | 94.7 | |
负极 | 石墨 | 2.5×1013 | 1.35×105 | 1.714×106 | 610.4 |
Li4Ti5O12 | 5.21×1019 | 1.88×105 | 2.568×105 | 610.4 | |
正极 | LiCoO2 | 3.14×105 | 6.667×1013 | 1.396×105 | 1 300 |
LiNi0.8Co0.15Al0.05O2 | 2.18×105 | 7.25×1016 | 1.3×105 | 1 274 | |
Li1.1(Ni1/3Co1/3 Mn1/3)0.9O2 | 7.9×105 | 2.25×1014 | 1.54×105 | 1 293 | |
LiFePO4 | 1.94×105 | 2.0×108 | 1.03×105 | 960 | |
电解液溶剂 | EC : DEC | 1.4×10115 | 1.015×106 | 1.635×105 | 406.9 |
EC : DMC | 1.95×1040 | 3.742×105 | 2.312×105 | 406.9 | |
PC : DEC | 3.92×1071 | 6.333×105 | 3.128×105 | 406.9 | |
PC : DEC | 7.53×1019 | 1.882×105 | 3.209×105 | 406.9 | |
粘结剂 | PVDF | 1.91×1025 | 2.86×105 | 1.5×106 | 81.4 |
[1] |
WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium-ion battery[J]. Journal of Power Sources, 2012, 208:210-224.
doi: 10.1016/j.jpowsour.2012.02.038 |
[2] |
FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267.
doi: 10.1016/j.ensm.2017.05.013 |
[3] |
WANG Q, MAO B, STOLIAROV S I, et al. A review of lithium-ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73:95-131.
doi: 10.1016/j.pecs.2019.03.002 |
[4] |
朱晓庆, 王震坡, WANG Hsim, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14):91-118.
doi: 10.3901/JME.2020.14.091 |
ZHU Xiaoqing, WANG Zhenpo, WANG Hsim, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14):91-118.
doi: 10.3901/JME.2020.14.091 |
|
[5] |
ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries:A review[J]. Journal of Power Sources, 2016, 306:178-192.
doi: 10.1016/j.jpowsour.2015.11.100 |
[6] |
CHIDAMBARANATHAN B, VIJAYARAM M, SURIYA V, et al. A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system[J]. Materials Today: Proceedings, 2020, 31:116-128.
doi: 10.1016/j.matpr.2020.01.256 |
[7] |
KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2):476-489.
doi: 10.1016/j.jpowsour.2007.04.018 |
[8] |
KONG D, WANG G, PING P, et al. Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions[J]. Applied Thermal Engineering, 2021, 189:116661.
doi: 10.1016/j.applthermaleng.2021.116661 |
[9] |
ZHANG Y, MEI W, QIN P, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192:116928.
doi: 10.1016/j.applthermaleng.2021.116928 |
[10] | LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J]. Journal of The Electrochemical Society, 2015, 162(10):A2163-A2173. |
[11] | COMAN P T, DARCY E C, VEJE C T, et al. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and arrhenius formulations[J]. Journal of The Electrochemical Society, 2017, 164:A587-A593. |
[12] |
PING P, WANG Q, CHUNG Y, et al. Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions[J]. Applied Energy, 2017, 205:1327-1344.
doi: 10.1016/j.apenergy.2017.08.073 |
[13] | 刘小杰, 张英, 刘洋, 等. 锂离子电池热管理系统综述[J]. 电池, 2022, 52(2):208-212. |
LIU Xiaojie, ZHANG Ying, LIU Yang, et al. A review on thermal management system for Li-ion battery[J]. Battery Bimonthly, 2022, 52(2):208-212. | |
[14] |
LIU H, WEI Z, HE W, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J]. Energy Conversion and Management, 2017, 150:304-330.
doi: 10.1016/j.enconman.2017.08.016 |
[15] |
NEWMAN J, TIEDEMANN W. Potential and current distribution in electrochemical cells:Interpretation of the half-cell voltage measurements as a function of reference-electrode location[J]. Journal of The Electrochemical Society, 1993, 140(7):1961.
doi: 10.1149/1.2220746 |
[16] |
SANTHANAGOPALAN S, GUO Q, RAMADASS P, et al. Review of models for predicting the cycling performance of lithium-ion batteries[J]. Journal of Power Sources, 2006, 156(2):620-628.
doi: 10.1016/j.jpowsour.2005.05.070 |
[17] |
GUO M, SIKHA G, WHITE R E. Single-particle model for a lithium-ion cell:Thermal behavior[J]. Journal of The Electrochemical Society, 2011, 158(2):A122.
doi: 10.1149/1.3521314 |
[18] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of The Electrochemical Society, 1985, 132(1):5-12.
doi: 10.1149/1.2113792 |
[19] |
GU H. Mathematical analysis of a Zn/NiOOH cell[J]. Journal of The Electrochemical Society, 1983, 130(7):1459-1464.
doi: 10.1149/1.2120009 |
[20] |
KARIMI G, LI X. Thermal management of lithium-ion batteries for electric vehicles[J]. International Journal of Energy Research, 2013, 37(1):13-24.
doi: 10.1002/er.1956 |
[21] |
WANG Q, SUN J, YAO X, et al. Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2006, 153:A329-A333.
doi: 10.1149/1.2139955 |
[22] |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power,lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1):81-100.
doi: 10.1016/S0378-7753(02)00488-3 |
[23] |
MAO B, CHEN H, CUI Z, et al. Failure mechanism of the lithium-ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122:1103-1115.
doi: 10.1016/j.ijheatmasstransfer.2018.02.036 |
[24] |
WANG Q, SUN J, YAO X, et al. Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6):561-569.
doi: 10.1016/j.jlp.2006.02.002 |
[25] |
HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of The Electrochemical Society, 2001, 148(7):A755.
doi: 10.1149/1.1377592 |
[26] |
GUO G, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8):2393-2398.
doi: 10.1016/j.jpowsour.2009.10.090 |
[27] | 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7):743-750,756. |
ZHANG Mingxuan, FENG Xuning, OUYANG Minggao, et al. Experiments and modeling of nail penetration thermal runaway in a NCM Li-ion power battery[J]. Automotive Engineering, 2015, 37(7):743-750,756. | |
[28] |
JHU C Y, WANG Y W, WEN C Y, et al. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries[J]. Journal of Thermal Analysis and Calorimetry, 2011, 106(1):159-163.
doi: 10.1007/s10973-011-1452-6 |
[29] |
CHEN W C, WANG Y W, SHU C M. Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge[J]. Journal of Power Sources, 2016, 318:200-209.
doi: 10.1016/j.jpowsour.2016.04.001 |
[30] |
REN D, LIU X, FENG X, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228:633-644.
doi: 10.1016/j.apenergy.2018.06.126 |
[31] |
PEREA A, PAOLELLA A, DUBé J, et al. State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells[J]. Journal of Power Sources, 2018, 399:392-397.
doi: 10.1016/j.jpowsour.2018.07.112 |
[32] |
GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes:Impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70):57171-57186.
doi: 10.1039/C5RA05897J |
[33] |
KONG D, WANG G, PING P, et al. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse[J]. eTransportation, 2022, 12:100157.
doi: 10.1016/j.etran.2022.100157 |
[34] |
CHEN J, RUI X, HSU H, et al. Thermal runaway modeling of LiNi0.6Mn0.2Co0.2O2/graphite batteries under different states of charge[J]. Journal of Energy Storage, 2022, 49:104090.
doi: 10.1016/j.est.2022.104090 |
[35] |
WU H, CHEN S, CHEN J, et al. Dimensionless normalized concentration based thermal-electric regression model for the thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2022, 521:230958.
doi: 10.1016/j.jpowsour.2021.230958 |
[36] |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7):3633-3642.
doi: 10.1039/C3RA45748F |
[37] |
LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of aging[J]. Journal of Power Sources, 2018, 373:220-231.
doi: 10.1016/j.jpowsour.2017.10.085 |
[38] |
QIN P, SUN J, WANG Q. A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway[J]. Journal of Power Sources, 2021, 486:229357.
doi: 10.1016/j.jpowsour.2020.229357 |
[39] |
COMAN P T, RAYMAN S, WHITE R E. A lumped model of venting during thermal runaway in a cylindrical lithium cobalt oxide lithium-ion cell[J]. Journal of Power Sources, 2016, 307:56-62.
doi: 10.1016/j.jpowsour.2015.12.088 |
[40] | COMAN P T, MáTéFI-TEMPFLI S, VEJE C T, et al. Modeling vaporization,gas generation and venting in Li-ion battery cells with a dimethyl carbonate electrolyte[J]. Journal of The Electrochemical Society, 2017, 164(9): A1858. |
[41] |
OSTANEK J K, LI W, MUKHERJEE P P, et al. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model[J]. Applied Energy, 2020, 268:114972.
doi: 10.1016/j.apenergy.2020.114972 |
[42] |
QIN P, JIA Z, WU J, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313:118767.
doi: 10.1016/j.apenergy.2022.118767 |
[43] |
LI W, LEóN QUIROGA V, CROMPTON K R, et al. High resolution 3-D simulations of venting in 18650 lithium-ion cells[J]. Frontiers in Energy Research, 2021, 9:788239.
doi: 10.3389/fenrg.2021.788239 |
[44] |
HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Laminar burning velocity of gases vented from failed Li-ion batteries[J]. Journal of Power Sources, 2021, 506:230141.
doi: 10.1016/j.jpowsour.2021.230141 |
[45] |
MAO B, ZHAO C, CHEN H, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281:116054.
doi: 10.1016/j.apenergy.2020.116054 |
[46] |
KIM J, MALLARAPU A, FINEGAN D P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium-ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489:229496.
doi: 10.1016/j.jpowsour.2021.229496 |
[47] | JOHNSPLASS J, HENRIKSEN M, VAAGSAETHER K, et al. Simulation of burning velocities in gases vented from thermal runaway lithium-ion batteries[C]// Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58),Reykjavik,Iceland,Sep. 25-27, 2017. |
[48] |
VENDRA C M R, SHELKE A V, BUSTON J E H, et al. Numerical and experimental characterisation of high energy density 21700 lithium-ion battery fires[J]. Process Safety and Environmental Protection, 2022, 160:153-165.
doi: 10.1016/j.psep.2022.02.014 |
[49] |
HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures[J]. Journal of Hazardous Materials, 2019, 371:1-7.
doi: S0304-3894(19)30251-1 pmid: 30844645 |
[50] |
HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Simulation of a premixed explosion of gas vented during Li-ion battery failure[J]. Fire Safety Journal, 2021, 126:103478.
doi: 10.1016/j.firesaf.2021.103478 |
[51] | 赵智兴. 预制舱式锂离子电池储能电站气体爆炸特性研究[D]. 郑州: 郑州大学, 2021. |
ZHAO Zhixing. Study on gas explosion characteristics of prefabricated lithium-ion battery energy storage power station[D]. Zhengzhou: Zhengzhou University, 2021. | |
[52] |
ZHAO J, LU S, FU Y, et al. Experimental study on thermal runaway behaviors of 18650 Li-ion battery under enclosed and ventilated conditions[J]. Fire Safety Journal, 2021, 125:103417.
doi: 10.1016/j.firesaf.2021.103417 |
[53] |
JIANG Z Y, QU Z G, ZHANG J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy[J]. Applied Energy, 2020, 268:115007.
doi: 10.1016/j.apenergy.2020.115007 |
[54] |
FENG X, LU L, OUYANG M, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115:194-208.
doi: 10.1016/j.energy.2016.08.094 |
[55] |
CHEN J, REN D, HSU H, et al. Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model[J]. Applied Energy, 2021, 295:117038.
doi: 10.1016/j.apenergy.2021.117038 |
[56] |
JIA Y, UDDIN M, LI Y, et al. Thermal runaway propagation behavior within 18650 lithium-ion battery packs:A modeling study[J]. Journal of Energy Storage, 2020, 31:101668.
doi: 10.1016/j.est.2020.101668 |
[57] |
QI C, ZHU Y, GAO F, et al. Mathematical model for thermal behavior of lithium-ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer, 2018, 124:552-563.
doi: 10.1016/j.ijheatmasstransfer.2018.03.100 |
[58] |
KIZILEL R, SABBAH R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2):1105-1112.
doi: 10.1016/j.jpowsour.2009.06.074 |
[59] |
LI Q, YANG C, SANTHANAGOPALAN S, et al. Numerical investigation of thermal runaway mitigation through a passive thermal management system[J]. Journal of Power Sources, 2019, 429:80-88.
doi: 10.1016/j.jpowsour.2019.04.091 |
[60] |
JINDAL P, KUMAR B S, BHATTACHARYA J. Coupled electrochemical-abuse-heat-transfer model to predict thermal runaway propagation and mitigation strategy for an EV battery module[J]. Journal of Energy Storage, 2021, 39:102619.
doi: 10.1016/j.est.2021.102619 |
[1] | SUN Yao, CAI Lu, QIN Deng, LI Tian, ZHANG Jiye. Influence of Open and Closed Window on Fire Smoke Characteristics in Double-decker Trains [J]. Journal of Mechanical Engineering, 2023, 59(4): 232-240. |
[2] | CHEN Xin, WANG Jianing, YANG Lifei, ZHANG Guanchen. Shear Specimens and Dynamic Shear Mechanical Properties of 6061-T6 Aluminum Alloy Sheets [J]. Journal of Mechanical Engineering, 2023, 59(4): 62-70. |
[3] | LIU Xinhua, GUO Bin, HE Rong, JIA Pu, LIU Xiaochuan, GUO Yazhou, YANG Shichun. Research on Dynamic Impact Performance of Light-UAV Battery [J]. Journal of Mechanical Engineering, 2023, 59(2): 177-186. |
[4] | YAN Runbo, SUN Liqing, YANG Ruixin, XIONG Rui. Evaluation of Model for External Short Circuit Voltage Behavior Prediction of Lithium-ion Batteries [J]. Journal of Mechanical Engineering, 2023, 59(2): 199-211. |
[5] | WEI Zhongbao, ZHONG Hao, HE Hongwen. Multiphysics-constrained Optimal Charging of Lithium-ion Battery [J]. Journal of Mechanical Engineering, 2023, 59(2): 223-232. |
[6] | ZHAO Mengjing, WANG Yong, YANG Shufeng, DUAN Weiping, LIU Wei, LI Jingshe. Distribution Characteristics of Multi-physics Fields in Arc Plasma [J]. Journal of Mechanical Engineering, 2022, 58(8): 153-159. |
[7] | CHEN Ming, ZHAO Zhenzhou, MENG Lingyu, FENG Junxin, JIANG Ruifang, HEIZHATI·Maerwati. Research on the Application Method of Parametric Model of Vortex Generator on Surface of Wind Turbine Blade Section [J]. Journal of Mechanical Engineering, 2022, 58(8): 258-265. |
[8] | LI Yanmei, LIU Huihan, ZHANG Chaolong, LUO Laijing. Lithium-ion Battery RUL Prediction Method Based on Double Gaussian Model [J]. Journal of Electrical Engineering, 2022, 17(4): 32-40. |
[9] | LIU Wangzeyu, LI Qing, YU Tiantian, XIONG Jinchen, ZHANG Hongyuan, DONG Ming, REN Ming. Study on Impedance Characteristics of Lithium-ion Battery in Over Discharge State [J]. Journal of Electrical Engineering, 2022, 17(4): 51-60. |
[10] | CHEN Yin, XIAO Ru, CUI Yilin, CHEN Mingyi. Research Review on Early Warning and Suppression Technology of Lithium-ion Battery Fire in Energy Storage Power Station [J]. Journal of Electrical Engineering, 2022, 17(4): 72-87. |
[11] | ZHANG Yuxin, WU Jianhua, ZHENG Linfeng, YE Tao. Design and Analysis of Lithium-ion Battery Management System Based on Digital Twin [J]. Journal of Electrical Engineering, 2022, 17(4): 103-112. |
[12] | XU Binxiang, ZHENG Linfeng, HUANG Yiheng, XIAO Zhineng, WANG Xinyue. Fast Estimating the State of Health of Lithium-ion Batteries Based on Improved Least Squares Support Vector Machine [J]. Journal of Electrical Engineering, 2022, 17(4): 11-19. |
[13] | LIU Jiahao, MA Qingwen. Hybrid Battery Thermal Management System with New Fins Added to Immersion Cooling [J]. Journal of Electrical Engineering, 2022, 17(4): 113-121. |
[14] | FANG Deyu, CHU Xiao, LIU Tao, LI Junfu. Research on Health Assessment Method of Lithium-ion Battery Based on Data-model Hybrid Drive [J]. Journal of Electrical Engineering, 2022, 17(4): 20-31. |
[15] | WANG Lixin, ZHANG Shuoyan, YAN Shixing, DONG Shiyun. Numerical Simulation of Droplet Infiltration of Micro-nano Structure in Nepenthes Slippery Zone [J]. Journal of Mechanical Engineering, 2022, 58(3): 203-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||