电气工程学报 ›› 2023, Vol. 18 ›› Issue (2): 52-69.doi: 10.11985/2023.02.006
任林涛1(), 汪飞1(
), 肖杨婷2, 丁峰2, 徐慧1, 余琛琛3
收稿日期:
2022-07-11
修回日期:
2022-08-30
出版日期:
2023-06-25
发布日期:
2023-07-12
通讯作者:
汪飞,男,1981年生,博士,教授。主要研究方向为新能源发电与微电网技术。E-mail:f.wang@shu.edu.cn
作者简介:
任林涛,男,1991年生,博士。主要研究方向为电能质量治理与功率变换器控制。E-mail:R11121572@163.com
基金资助:
REN Lintao1(), WANG Fei1(
), XIAO Yangting2, DING Feng2, XU Hui1, YU Chenchen3
Received:
2022-07-11
Revised:
2022-08-30
Online:
2023-06-25
Published:
2023-07-12
摘要:
直流微电网因其结构复杂、功能多样,对系统中变换器的性能有较高要求。四开关Buck-Boost变换器具有宽范围电压变换、输入输出同极性、功率双向传输等优势,近年来得到国内外学者的广泛关注,被应用于直流微电网中的新能源发电、储能等单元。通过分析该变换器的工作原理与典型控制策略,对变换器研究中现存关键问题,模式切换与效率优化进行归纳总结。针对模式切换问题,从模式切换时死区机理出发,基于多模式控制策略,分析了模式平滑切换的典型控制方法。针对效率优化问题,归纳了影响变换器效率的关键因素,并从硬开关与软开关两个方面分析阐述了常见的效率优化方法。最后,对四开关Buck-Boost变换器的现有研究工作进行了总结与展望,为该领域的进一步研究和发展提供了理论指导。
中图分类号:
任林涛, 汪飞, 肖杨婷, 丁峰, 徐慧, 余琛琛. 四开关Buck-Boost变换器研究综述*[J]. 电气工程学报, 2023, 18(2): 52-69.
REN Lintao, WANG Fei, XIAO Yangting, DING Feng, XU Hui, YU Chenchen. Review Research on the Four-switch Buck-Boost Converter[J]. Journal of Electrical Engineering, 2023, 18(2): 52-69.
表4
模式切换优化控制对比分析"
控制方法 | 优点 | 不足 | 参考文献 | ||||
---|---|---|---|---|---|---|---|
线 性 控 制 | 电压型控制 | 输出电压单环控制 | 控制方式简单,操作容易 | 动态性能不足 | [ | ||
电流型控制 | 平均电感电流双环控制 | 动态响应速度提高 | 操作复杂,成本增加 | [ | |||
前馈 控制 | 输入 电压 前馈 | 动态载波生产 | 输入暂态响应能力提高 | 实现方式复杂 | [ | ||
输入电压前馈函数 | 实现方式简单 | 多模式控制理论分析不足 | [ | ||||
快速占空比计算 | 实时跟踪输入电压变化,提高响应精度 | 对计算资源有一定要求 | [ | ||||
电感电流前馈 | 补偿模式切换电感电流,实现平滑过渡 | 成本增加,建模复杂 | [ | ||||
自适应控制 | 模式占空比补偿控制 | 分模式补偿,控制精度提高 | 补偿器设计复杂 | [ | |||
级联多模式控制 | 分多种模式设计控制器,控制精度提高 | 环节冗余 | [ | ||||
非 线 性 控 制 | 滑模控制 | 系统稳定性和动态响应较优 | 滑动面方程设计复杂 | [ | |||
模型预测控制 | 简化控制结构,具有良好的暂态响应能力 | 成本函数需要合理选取 | [ | ||||
非线性模型设计 | 基于反馈线性化的 非线性控制 | 面对扰动因素,快速响应 | 建模过程依赖对无源器件的精准控制 | [ | |||
电感电流非线性 前馈控制 | 扩宽变换器稳定工作范围, 提高变换器工作的稳定性 | 设计环节计算复杂 | [ | ||||
大信号建模 | 统一模式 控制 | 进行模式的实时选择,暂态响应能力较优 | 模型的建立需要理论支撑 | [ | |||
无扰切换 控制 | [ | ||||||
动态模式 选择 | [ |
[1] | 徐海亮, 张禹风, 聂飞, 等. 微电网运行控制技术要点及展望[J]. 电气工程学报, 2020, 15(1):1-15. |
XU Hailiang, ZHANG Yufeng, NIE Fei, et al. Key points and prospect of microgrid operation and control technologies[J]. Journal of Electrical Engineering, 2020, 15(1):1-15. | |
[2] | 姚钢, 陈少霞, 王伟峰, 等. 分布式电源接入直流微电网的研究综述[J]. 电器与能效管理技术, 2015(4):1-6. |
YAO Gang, CHEN Shaoxia, WANG Weifeng, et al. Overview of research on DC micro-grid for distributed power access[J]. Electrical & Energy Management Technology, 2015(4):1-6. | |
[3] | 雍静, 徐欣, 曾礼强, 等. 低压直流供电系统研究综述[J]. 中国电机工程学报, 2013, 33(7):42-52. |
YONG Jing, XU Xin, ZENG Liqiang, et al. A review of low voltage DC power distribution system[J]. Proceedings of the CSEE, 2013, 33(7):42-52. | |
[4] |
DRAGIČEVIĆ T, LU X N, VASQUEZ J C, et al. DC microgrids—Part II:A review of power architectures,applications,and standardization issues[J]. IEEE Transactions on Power Electronics, 2016, 31(5):3528-3549.
doi: 10.1109/TPEL.2015.2464277 |
[5] | QIU Z X, SUN K. A photovoltaic generation system based on wide voltage-gain DC-DC converter and differential power processors for DC microgrids[J]. Chinese Journal of Electrical Engineering, 2017, 3(1):84-95. |
[6] |
QIN Y X, LI S N, HUI S Y. Topology-transition control for wide-input-voltage-range efficiency improvement and fast current regulation in automotive LED applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7):5883-5893.
doi: 10.1109/TIE.2017.2686304 |
[7] | CARICCHI F, CRESCIMBINI F, NAPOLI A D. 20 kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives[C]// Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition, March 05-09, 1995,Dallas,TX,USA. IEEE, 1995, 2:887-892. |
[8] | 任小永, 唐钊, 阮新波, 等. 一种新颖的四开关Buck-Boost变换器[J]. 中国电机工程学报, 2008, 28(21):15-19. |
REN Xiaoyong, TANG Zhao, RUAN Xinbo, et al. A novel four switch Buck-Boost converter[J]. Proceedings of the CSEE, 2008, 28(21):15-19. | |
[9] | ORELLANA M, PETIBON S, ESTIBALS B, et al. Four switch buck-boost converter for photovoltaic DC-DC power applications[C]// IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, November 07-10,2010,Glendale,AZ,USA. IEEE, 2010:469-474. |
[10] |
KHAN M A, AHMED A, HUSAIN I, et al. Performance analysis of bidirectional DC-DC converters for electric vehicles[J]. IEEE Transactions on Industry Applications, 2015, 51(4):3442-3452.
doi: 10.1109/TIA.2015.2388862 |
[11] | WANG L Y, WU X B, LOU J N. A multi-mode four-switch buck-boost DC/DC converter[C]// 2009 Asia-Pacific Power and Energy Engineering Conference, March 27-31,2009,Wuhan,China. IEEE, 2009:1-4. |
[12] |
LEE H S, YUN J J. High-efficiency bidirectional buck-boost converter for photovoltaic and energy storage systems in a smart grid[J]. IEEE Transactions on Power Electronics, 2019, 34(5):4316-4328.
doi: 10.1109/TPEL.63 |
[13] | 梁永亮, 吴跃斌, 马钊, 等. 新一代低压直流供用电系统在“新基建”中的应用技术分析及发展展望[J]. 中国电机工程学报, 2021, 41(1):13-24. |
LIANG Yongliang, WU Yuebin, MA Zhao, et al. Application and development prospect of new generation of LVDC supply and utilization system in “new infrastructure”[J]. Proceedings of the CSEE, 2021, 41(1):13-24. | |
[14] | WAFFLER S, KOLAR J W. A novel low-loss modulation strategy for high-power bi-directional buck+boost converters[C]// 2007 7th International Conference on Power Electronics, October 22-26,2007,Daegu,South Korea. IEEE, 2007:889-894. |
[15] |
CHEN C W, CHEN K H, CHEN Y M. Modeling and controller design of an autonomous PV module for DMPPT PV systems[J]. IEEE Transactions on Power Electronics, 2014, 29(9):4723-4732.
doi: 10.1109/TPEL.2013.2287752 |
[16] |
HUANG P C, WU W Q, HO H H, et al. Hybrid buck-boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck-boost converter[J]. IEEE Transactions on Power Electronics, 2010, 25(3):719-730.
doi: 10.1109/TPEL.2009.2031803 |
[17] | 张斐, 许建平, 杨平, 等. 两开关伪连续导电模式Buck-Boost功率因数校正变换器[J]. 中国电机工程学报, 2012, 32(9):56-64. |
ZHANG Fei, XU Jianping, YANG Ping, et al. Two-switch pseudo continuous conduction mode Buck-Boost power factor correction converter[J]. Proceedings of the CSEE, 2012, 32(9):56-64. | |
[18] |
CHEN J J, SHEN P N, HWANG Y S. A high-efficiency positive buck-boost converter with mode-select circuit and feed-forward techniques[J]. IEEE Transactions on Power Electronics, 2012, 28(9):4240-4247.
doi: 10.1109/TPEL.2012.2223718 |
[19] |
REN X Y, RUAN X B, QIAN H, et al. Three-mode dual-frequency two-edge modulation scheme for four-switch buck-boost converter[J]. IEEE Transactions on Power Electronics, 2008, 24(2):499-509.
doi: 10.1109/TPEL.2008.2005578 |
[20] |
SAHU B, RINCON-MORA G A. A low voltage,dynamic,noninverting,synchronous buck-boost converter for portable applications[J]. Transactions on Power Electronics, 2004, 19(2):443-452.
doi: 10.1109/TPEL.2003.823196 |
[21] | 肖华锋, 谢少军. 用于光伏并网的交错型双管Buck-Boost变换器[J]. 中国电机工程学报, 2010, 30(21):7-12. |
XIAO Huafeng, XIE Shaojun. An interleaving double-switch buck-boost converter for PV grid-connected inverter[J]. Proceedings of the CSEE, 2010, 30(21):7-12. | |
[22] | WEISSBACH R S, TORRES K W. A noninverting buck-boost converter with reduced components using a microcontroller[C]// Proceedings. IEEE SoutheastCon 2001,April 01,2001,Clemson,SC,USA. IEEE, 2001:79-84. |
[23] | GABORIAULT M, NOTMAN A. A high efficiency,noninverting,buck-boost DC-DC converter[C]// Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition,2004. APEC’ 04,February 22-26,2004,Anaheim,CA,USA. IEEE, 2004, 3:1411-1415. |
[24] | RAJARSHI P, MAKSIMOVIC D. Analysis of PWM nonlinearity in non-inverting buck-boost power converters[C]// 2008 IEEE Power Electronics Specialists Conference, June 15-19,2008,Rhodes,Greece. IEEE, 2008:3741-3747. |
[25] | 任小永, 阮新波, 李明秋, 等. 双沿调制的四开关Buck-Boost 变换器[J]. 中国电机工程学报, 2009, 29(12):16-23. |
REN Xiaoyong, RUAN Xinbo, LI Mingqiu, et al. Dual edge modulated four-switch Buck-Boost converter[J]. Proceedings of the CSEE, 2009, 29(12):16-23. | |
[26] | RAJARSHI P, MAKSIMOVIC D. Smooth transition and ripple reduction in 4-switch non-inverting buck-boost power converter for WCDMA RF power amplifier[C]// 2008 IEEE International Symposium on Circuits and Systems, May 18-21,2008,Seattle,WA,USA. IEEE, 2008:3266-3269. |
[27] | 贾磊磊, 孙孝峰, 郑智文, 等. 消除非反向Buck-Boost变换器运行死区的充放电控制策略[J]. 中国电机工程学报, 2020, 40(10):3270-3280. |
JIA Leilei, SUN Xiaofeng, ZHENG Zhiwen, et al. Charge and discharge control strategy for eliminating the operational dead zone of noninverting Buck-Boost converter[J]. Proceedings of the CSEE, 2020, 40(10):3270-3280. | |
[28] |
RESTREPO C, KONJEDIC T, CALVENTE J, et al. Hysteretic transition method for avoiding the dead-zone effect and subharmonics in a noninverting buck-boost converter[J]. IEEE Transactions on Power Electronics, 2015, 30(6):3418-3430.
doi: 10.1109/TPEL.2014.2333736 |
[29] | WANG Y, LAN J Y, HUANG X, et al. An improved single-mode control strategy based on four-switch buck-boost converter[C]// 2020 IEEE Applied Power Electronics Conference and Exposition, March 15-19,2020,New Orleans,LA,USA. IEEE, 2020:320-325. |
[30] |
TSAI C H, TSAI Y S, LIU H C. A stable mode-transition technique for a digitally controlled non-inverting Buck-Boost DC-DC converter[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):475-483.
doi: 10.1109/TIE.2014.2327565 |
[31] |
TSAI Y Y, TSAI Y S, TSAI C W, et al. Digital noninverting-Buck-Boost converter with enhanced duty-cycle-overlap control[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(1):41-45.
doi: 10.1109/TCSII.2016.2546881 |
[32] |
JONES D C, ERICKSON R W. A nonlinear state machine for dead zone avoidance and mitigation in a synchronous noninverting Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2013, 28(1):467-480.
doi: 10.1109/TPEL.2012.2198924 |
[33] |
CHO Y K, LEE K C. Noninverting Buck-Boost DC-DC converter using a duobinary-encoded single-bit a high efficiency modulator[J]. IEEE Transactions on Power Electronics, 2020, 35(1):484-495.
doi: 10.1109/TPEL.63 |
[34] | HUANG P C, WU W Q, HO H H, et al. High efficiency and smooth transition buck-boost converter for extending battery life in portable devices[C]// 2009 IEEE Energy Conversion Congress and Exposition, September 20-24,2009,San Jose,CA,USA. IEEE, 2009:2869-2872. |
[35] | MA J J, ZHU M, ZHANG J W, et al. Improved asynchronous voltage regulation strategy of non-inverting Buck-Boost converter for renewable energy integration[C]// 2015 IEEE 2nd International Future Energy Electronics Conference, November 01-04,2015,Taipei,Taiwan,China. IEEE, 2015:1-5. |
[36] |
CALLEGARO L, CIOBOTARU M, PAGANO D J, et al. A simple smooth transition technique for the noninverting Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2018, 33(6):4906-4915.
doi: 10.1109/TPEL.2017.2731974 |
[37] | ZHANG N, BATTERNALLY S, LIM K C, et al. Analysis of the non-inverting buck-boost converter with four-mode control method[C]// 2017 43rd Annual Conference of the IEEE Industrial Electronics Society,October 29-November 01,2017,Beijing,China. IEEE, 2017:876-881. |
[38] |
ZHANG N, ZHANG G D, SEE K W. Systematic derivation of dead-zone elimination strategies for the noninverting synchronous buck-boost converter[J]. IEEE Transactions on Power Electronic, 2018, 33(4):3497-3508.
doi: 10.1109/TPEL.63 |
[39] |
JIA L L, SUN X F, ZHENG Z W, et al. Multimode smooth switching strategy for eliminating the operational dead zone in noninverting buck-boost converter[J]. IEEE Transactions on Power Electronics, 2020, 35(3):3106-3113.
doi: 10.1109/TPEL.63 |
[40] |
AKHILESH K, LAKSHMINARASAMMA N. Dead-zone free control scheme for H-bridge buck-boost converter[J]. IEEE Transactions on Industry Applications, 2020, 56(6):6619-6629.
doi: 10.1109/TIA.28 |
[41] | MA J J, ZHU M, LI X Y, et al. Bumpless transfer of non-inverting buck boost converter among multiple working modes[C]// 2018 IEEE Applied Power Electronics Conference and Exposition, March 04-08,2018,San Antonio,TX,USA. IEEE, 2018:1909-1914. |
[42] |
WENG X, ZHAO Z M, CHEN K N, et al. A nonlinear control method for bumpless mode transition in noninverting buck-boost converter[J]. IEEE Transactions on Power Electronics, 2021, 36(2):2166-2178.
doi: 10.1109/TPEL.63 |
[43] |
KIM K D, LEE H M, HONG S W, et al. A noninverting buck-boost converter with state-based current control for Li-ion battery management in mobile applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9623-9627.
doi: 10.1109/TIE.41 |
[44] |
HONG X E, WU J F, WEI C L. 98.1%-efficiency hysteretic-current-mode noninverting Buck-Boost DC-DC converter with smooth mode transition[J]. IEEE Transactions on Power Electronics, 2017, 32(3):2008-2017.
doi: 10.1109/TPEL.2016.2567484 |
[45] |
AHARON I, KUPERMAN A, SHMILOVITZ D. Analysis of dual-carrier modulator for bidirectional noninverting Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2015, 30(2):840-848.
doi: 10.1109/TPEL.2014.2315993 |
[46] | 王菁月, 裴忠晨, 刘闯, 等. 面向低压直流配电网的双降压/升压型柔性互联开关[J]. 电力自动化设备, 2021, 41(5):247-253. |
WANG Jingyue, PEI Zhongchen, LIU Chuang, et al. Dual Buck/Boost flexible interconnected switch for low voltage DC distribution network[J]. Electric Power Automation Equipment, 2021, 41(5):247-253. | |
[47] |
LEE Y J, KHALIGH A, EMADI A. A compensation technique for smooth transitions in a noninverting Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2009, 24(4):1002-1015.
doi: 10.1109/TPEL.2008.2010044 |
[48] |
WEI C L, CHEN C H, WU K C, et al. Design of an average-current-mode noninverting Buck-Boost DC-DC converter with reduced switching and conduction losses[J]. IEEE Transactions on Power Electronics, 2012, 27(12):4934-4943.
doi: 10.1109/TPEL.2012.2193144 |
[49] | 姚川, 阮新波, 曹伟杰, 等. 双管Buck-Boost变换器的输入电压前馈控制策略[J]. 中国电机工程学报, 2013, 33(21):36-44. |
YAO Chuan, RUAN Xinbo, CAO Weijie, et al. An input voltage feedforward control strategy for two-switch Buck-Boost DC-DC converters[J]. Proceedings of the CSEE, 2013, 33(21):36-44. | |
[50] |
LIU P J, CHANG C W. CCM noninverting Buck-Boost converter with fast duty-cycle calculation control for line transient improvement[J]. IEEE Transactions on Power Electronics, 2018, 33(6):5097-5107.
doi: 10.1109/TPEL.63 |
[51] | 杨翔宇, 肖先勇, 马俊鹏, 等. 基于电感电流反馈的双向DC-DC变换器下垂控制[J]. 中国电机工程学报, 2020, 40(8):2638-2647. |
YANG Xiangyu, XIAO Xianyong, MA Junpeng, et al. Droop control of bi-directional DC-DC converters based on inductive current feedback[J]. Proceedings of the CSEE, 2020, 40(8):2638-2647. | |
[52] |
XU Q W, VAFAMAND N, CHEN L L, et al. Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 1205-1221.
doi: 10.1109/JESTPE.6245517 |
[53] | LEVRON Y, SHMILOVITZ D. Sliding mode control of photovoltaic module integrated buck-boost converters[C]// 2012 15th International Power Electronics and Motion Control Conference, September 04-06,2012,Novi Sad,Serbia. IEEE, 2012:LS3a-2.1-1-LS3a-2.1-6. |
[54] | ATES E, TEKGUN B, ABLAY G. Sliding mode control of a switched reluctance motor drive with four-switch bi-directional DC-DC converter for torque ripple minimization[C]// 2020 International Conference on Smart Energy Systems and Technologies, September 07-09,2020,Istanbul,Turkey. IEEE, 2020:1-6. |
[55] |
LI X, LIU Y S, XUE Y S. Four-switch buck-boost converter based on model predictive control with smooth mode transition capability[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10):9058-9069.
doi: 10.1109/TIE.2020.3028809 |
[56] | 吴岩, 王玮, 曾国宏, 等. 四开关Buck-Boost变换器的多模式模型预测控制策略[J]. 电工技术学报, 2022, 37(10):2572-2583. |
WU Yan, WANG Wei, ZENG Guohong, et al. Multi-mode model predictive control strategy for the four-switch Buck-Boost converter[J]. Transactions of China Electrotechnical Society, 2022, 37(10):2572-2583. | |
[57] |
CALLEGARO L, CIOBOTARU M, PAGANO D J, et al. Feedback linearization control in photovoltaic module integrated converters[J]. IEEE Transactions on Power Electronics, 2019, 34(7):6876-6889.
doi: 10.1109/TPEL.63 |
[58] |
MA J J, ZHU M, LI Y W, et al. Dynamic analysis of multimode buck-boost converter:An LPV system model point of view[J]. IEEE Transactions on Power Electronics, 2021, 36(7):8539-8551.
doi: 10.1109/TPEL.63 |
[59] | MA J J, ZHU M, LI G H, et al. Concept of unified mode control for non-inverting Buck-Boost converter[C]// 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, June 03-07,2017,Kaohsiung,Taiwan,China. IEEE, 2017:1235-1240. |
[60] | MA J J, ZHU M, CHEN Y J, et al. LPV-based cascade control for three mode non-inverting buck-boost converter[C]// 2019 IEEE 4th International Future Energy Electronics Conference, November 25-28,2019, Singapore. IEEE, 2019:1-6. |
[61] | MA J J, ZHU M, HE G Q, et al. Breaking performance limit of asynchronous control for non-inverting buck boost converter[C]// ECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society,October 29-November 01,2017,Beijing,China. IEEE, 2017:928-933. |
[62] |
KIM D H, LEE B K. An enhanced control algorithm for improving the light-load efficiency of noninverting synchronous buck-boost converters[J]. IEEE Transactions on Power Electronics, 2016, 31(5):3395-3399.
doi: 10.1109/TPEL.2015.2500622 |
[63] |
JONES D C, ERICKSON R W. Buck-Boost converter efficiency maximization via a nonlinear digital control mapping for adaptive effective switching frequency[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(3):153-165.
doi: 10.1109/JESTPE.2013.2277852 |
[64] |
ZHANG Y, CHENG X F, YIN C L. A soft-switching non-inverting buck-boost converter with efficiency and performance improvement[J]. IEEE Transactions on Power Electronics, 2019, 34(12):11526-11530.
doi: 10.1109/TPEL.63 |
[65] | YUN H, DONG M, JIAN Y, et al. Application of soft-switching technology in four switch Buck-Boost circuit[C]// 2017 12th IEEE Conference on Industrial Electronics and Applications, June 18-20,2017,Siem Reap,Cambodia. IEEE, 2017:1675-1679. |
[66] |
WAFFLER S, KOLAR J W. A novel low-loss modulation strategy for high-power bidirectional buck+boost converters[J]. IEEE Transactions on Power Electronics, 2009, 24(6):1589-1599.
doi: 10.1109/TPEL.2009.2015881 |
[67] |
ZHOU Z J, LI H Y, WU X K. A constant frequency ZVS control system for the four-switch buck-boost DC-DC converter with reduced inductor current[J]. IEEE Transactions on Power Electronics, 2019, 34(7):5996-6003.
doi: 10.1109/TPEL.63 |
[68] | LIU Q, QIAN Q S, REN B W, et al. A new modulation strategy for four-switch buck-boost converter with reduced freewheeling current[C]// 2020 IEEE Applied Power Electronics Conference and Exposition, March 15-19,2020,New Orleans,LA,USA. IEEE, 2020:2104-2108. |
[69] |
LIU Q, QIAN Q, ZHENG M, et al. An improved quadrangle control method for four-switch buck-boost converter with reduced loss and decoupling strategy[J]. IEEE Transactions on Power Electronics, 2021, 36(9):10827-10841.
doi: 10.1109/TPEL.2021.3064074 |
[1] | 施国标, 张洪泉, 王帅, 鞠程赟, 桑冬岗. 电液耦合转向系统应急转向控制方法研究[J]. 机械工程学报, 2023, 59(6): 149-158. |
[2] | 王峰, 张健, 徐兴, 王春海, 阙红波, 高扬. 行星耦合PHEV模式切换过程全频段瞬态扭振特性分析与主动抑制[J]. 机械工程学报, 2023, 59(4): 173-189. |
[3] | 伍文俊, 王思佳, 蔡嘉齐. 含网电变压器保护的电动修井机超级电容储能控制*[J]. 电气工程学报, 2021, 16(2): 122-130. |
[4] | 赵治国, 付靖, 蒋蓝星, 范佳琦. 复合功率分流系统发动机起动模型预测控制[J]. 机械工程学报, 2020, 56(22): 201-209. |
[5] | 赵治国, 倪润宇, 姜斯文, 雷丹. DCT变速四驱HEV混动至纯电动模式切换优化控制[J]. 机械工程学报, 2019, 55(22): 140-152. |
[6] | 张利鹏, 谷定杰, 祁炳楠, 董闯闯. 电动汽车双模耦合驱动系统变模冲击抑制方法[J]. 机械工程学报, 2018, 54(8): 165-176. |
[7] | 陈无畏, 胡振国, 汪洪波, 魏振亚, 谢有浩. 基于可拓决策和人工势场法的车道偏离辅助系统研究[J]. 机械工程学报, 2018, 54(16): 134-143. |
[8] | 胡明辉, 陈爽, 曾剑峰. 双电机耦合系统驱动模式切换控制策略研究[J]. 机械工程学报, 2017, 53(14): 59-67. |
[9] | 郑常宝,黄娟,苏俊森. 具有储能功能的双模式光伏逆变器的研究[J]. 电气工程学报, 2015, 10(8): 35-39. |
[10] | 王磊;张勇;舒杰;殷承良. 基于模糊自适应滑模方法的混联式混合动力客车模式切换协调控制[J]. , 2012, 48(14): 119-127. |
[11] | 裴晓飞;刘昭度;马国成;齐志权. 汽车自适应巡航系统的多模式切换控制[J]. , 2012, 48(10): 96-102. |
[12] | 赵治国;何宁;朱阳;余卓平. 四轮驱动混合动力轿车驱动模式切换控制[J]. , 2011, 47(4): 100-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||