[1] |
葛兴来, 张艺驰, 杨宁. 车载牵引变流器关键部件寿命评估综述[J]. 电源学报, 2021, 19(4):140-152.
doi: 10.13234/j.issn.2095-2805.2021.4.140
|
|
GE Xinglai, ZHANG Yichi, YANG Ning. Overview of lifetime evaluation on key components in vehicular traction converter[J]. Journal of Power Supply, 2021, 19(4):140-152.
doi: 10.13234/j.issn.2095-2805.2021.4.140
|
[2] |
田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007.
|
|
TIAN Hongqi. Train aerodynamics[M]. Beijing: China Railway Publishing House, 2007.
|
[3] |
KO Y Y, CHEN C H, HOE I T, et al. Field measurements of aerodynamic pressures in tunnels induced by high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 100(1):19-29.
doi: 10.1016/j.jweia.2011.10.008
|
[4] |
丁叁叁, 陈大伟, 刘加利. 中国高速列车研发与展望[J]. 力学学报, 2021, 53(1):35-50.
doi: 10.6052/0459-1879-20-225
|
|
DING Sansan, CHEN Dawei, LIU Jiali. Research,development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1):35-50.
doi: 10.6052/0459-1879-20-225
|
[5] |
蒋博彦. 多翼离心风机非对称内流演变机理及回流抑制研究[D]. 武汉: 华中科技大学, 2021.
|
|
JIANG Boyan. Evolution mechanism and backflow suppression of multi-blade centrifugal fan asymmetric internal flow[D]. Wuhan: Huazhong University of Science & Technology, 2021.
|
[6] |
SAKUMA Y, SUZUKI M, IDO A, et al. Measurement of air velocity and pressure distributions around high-speed trains on board and on the ground[J]. Journal of Mechanical Systems for Transportation and Logistics, 2010, 3(1):110-118.
doi: 10.1299/jmtl.3.110
|
[7] |
陈厚嫦, 张岩, 何德华, 等. 时速350 km/h高速铁路隧道气动效应基本规律试验研究[J]. 中国铁道科学, 2014, 35(1):55-59.
|
|
CHEN Houchang, ZHANG Yan, HE Dehua, et al. Experimental study on the basic laws of the aerodynamic effect of 350 km/h high speed railway tunnel[J]. China Railway Science, 2014, 35(1):55-59.
|
[8] |
于庆斌, 张兰. 兰新客运专线动车组设备舱差压跟踪试验研究[J]. 城市轨道交通研究, 2019, 22(2):17-21.
|
|
YU Qingbin, ZHANG Lan. Tracking test study on the differential pressure of equipment cabin for Lanzhou-Xinjiang passenger dedicated line vehicles[J]. Urban Mass Transit, 2019, 22(2):17-21.
|
[9] |
尚克明, 杨明智, 周彬. 城际动车组气动阻力优化的风洞试验研究[J]. 铁道科学与工程学报, 2018, 15(9):2202-2208.
|
|
SHANG Keming, YANG Mingzhi, ZHOU Bin. Experimental study on the optimization of the aerodynamic drag of the intercity EMUs[J]. Journal of Railway Science and Engineering, 2018, 15(9):2202-2208.
|
[10] |
牛纪强, 梁习锋, 周丹, 等. 动车组过隧道时设备舱气动效应动模型试验[J]. 浙江大学学报, 2016, 50(7):1258-1265.
|
|
NIU Jiqiang, LIANG Xifeng, ZHOU Dan, et al. Equipment cabin aerodynamic performance of electric multiple unit going through tunnel by dynamic model test[J]. Journal of Zhejiang University, 2016, 50(7):1258-1265.
|
[11] |
韩运动, 陈大伟, 林鹏, 等. 动车组明线会车工况下的设备舱气流组织仿真研究[J]. 铁道机车车辆, 2013, 33(6):22-26.
|
|
HAN Yundong, CHEN Dawei, LIN Peng, et al. Air distribution simulation study of EMU equipment bay under passing by each other on open track[J]. Railway Locomotive & Car, 2013, 33(6):22-26.
|
[12] |
代玉博. 恶劣环境下高速动车组设备舱流场的数值模拟[D]. 长春: 长春工业大学, 2016.
|
|
DAI Yubo. Numerical simulation research of high-speed train equipment compartment flow field under the bad environment[D]. Changchun: Changchun University of Technology, 2016.
|
[13] |
刘楠, 朱佳宁, 苏慈, 等. 动车组明线运行空调冷凝器进出口压力分布及优化[J]. 大连交通大学学报, 2019, 40(1):26-30.
|
|
LIU Nan, ZHU Jianing, SU Ci, et al. Optimization of inlet and outlet pressure distribution of air conditioning condenser[J]. Journal of Dalian Jiaotong University, 2019, 40(1):26-30.
|
[14] |
史永达, 尚克明, 李雪亮, 等. 高速动车组开闭罩缝隙对气动性能的影响研究[J]. 铁道科学与工程学报, 2019, 16(9):2156-2161.
|
|
SHI Yongda, SHANG Keming, LI Xueliang, et al. Study on the influence of opening/closing structure on the aerodynamic performance of high-speed train[J]. Journal of Railway Science and Engineering, 2019, 16(9):2156-2161.
|
[15] |
BLOCKEN B. Computational Fluid Dynamics for urban physics:Importance,scales,possibilities,limitations and ten tips and tricks towards accurate and reliable simulations[J]. Building and Environment, 2015, 91:219-245.
doi: 10.1016/j.buildenv.2015.02.015
|
[16] |
丁杰, 张平. 电动汽车变流器用IGBT水冷散热器热仿真分析[J]. 中南大学学报, 2017, 48(2):525-532.
|
|
DING Jie, ZHANG Ping. Thermal analysis of IGBT water-cooling radiator for electric vehicle converter[J]. Journal of Central South University, 2017, 48(2):525-532.
|
[17] |
井永腾, 王宁, 李岩, 等. 电磁-热-流弱耦合的变压器绕组温升研究[J]. 电机与控制学报, 2019, 23(10):41-48.
|
|
JING Yongteng, WANG Ning, LI Yan, et al. Research on temperature rise of transformer windings with electromagnetic-thermal-flow weak coupling[J]. Electric Machines and Control, 2019, 23(10):41-48.
|
[18] |
VOLKE A, HORNKAMP M. IGBT modules technologies,driver and application[M]. 2nd ed. Munich: Infineon Technologies AG, 2012.
|
[19] |
KULKARNI S, KHAPARDE S. Transformer engineering:Design,technology,and diagnostics[M]. 2nd ed. Boca Raton: CRC Press, 2013.
|
[20] |
丁杰, 李江红, 陈燕平, 等. 流动状态与热源简化方式对IGBT水冷板仿真结果的影响[J]. 机车电传动, 2011(5):21-25.
|
|
DING Jie, LI Jianghong, CHEN Yanping, et al. Effects of flow regime and heat source simplifications on simulation results for water-cooling plate of IGBT[J]. Electric Drive for Locomotive, 2011(5):21-25.
|
[21] |
付和平, 陈杰, 邱瑞昌, 等. 电力电子变流装置散热器状态智能预测方法[J]. 电工技术学报, 2021, 36(20):4350-4358.
|
|
FU Heping, CHEN Jie, QIU Ruichang, et al. Intelligent prediction method for thermal dissipation state of heatsink in power electronic converter[J]. Transactions of China Electrotechnical Society, 2021, 36(20):4350-4358.
|