[1] |
李泽文, 胡让, 刘湘, 等. 基于PCA-DBILSTM的多因素短期负荷预测模型[J]. 电力系统及其自动化学报, 2020:1-9.
|
|
LI Zewen, HU Rang, LIU Xiang, et al. Multi-factor short-term load forecasting model based on PCA-DBILSTM[J]. Journal of Electric Power System and Automation, 2020:1-9.
|
[2] |
陈吕鹏, 殷林飞, 余涛, 等. 基于深度森林算法的电力系统短期负荷预测[J]. 电力建设, 2018, 39(11):42-50.
|
|
CHEN Lüpeng, YIN Linfei, YU Tao, et al. Short-term load forecasting of power system based on deep forestalgorithm[J]. Electric Power Construction, 2018, 39(11):42-50.
|
[3] |
黄南天, 齐斌, 刘座铭, 等. 采用面积灰关联决策的高斯过程回归概率短期负荷预测[J]. 电力系统自动化, 2018, 42(23):64-75.
|
|
HUANG Nantian, QI Bin, LIU Zuoming, et al. Gaussian process regression probabilistic short-term load forecasting using area gray correlation decision[J]. Automation of Electric Power Systems, 2018, 42(23):64-75.
|
[4] |
DUDEK G. Pattern-based local linear regression models for short-term load forecasting[J]. Electric Power Systems Research, 2016, 130:139-147.
doi: 10.1016/j.epsr.2015.09.001
|
[5] |
DAGDOUGUI H, BAGHERI F, LE H, et al. Neural network model for short-term and very-short-term load forecasting in district buildings[J]. Energy and Buildings, 2019, 203:109408.
doi: 10.1016/j.enbuild.2019.109408
|
[6] |
马静波, 杨洪耕. 自适应卡尔曼滤波在电力系统短期负荷预测中的应用[J]. 电网技术, 2005(1):75-79.
|
|
MA Jingbo, YANG Honggeng. Application of adaptive Kalman filter in short-term load forecasting of power system[J]. Power System Technology, 2005(1):75-79.
|
[7] |
BAHARUDIN Z, KAMEL N. Autoregressive method in short term load forecast[C]// 2008 IEEE 2nd International Power and Energy Conference,Johor Bahru,IEEE, 2008:1603-1608.
|
[8] |
朱陶业, 晏小兵, 李应求. ARIMA模型在广西短期电力负荷预测中的应用[J]. 长沙电力学院学报, 2000(2):20-22.
|
|
ZHU Taoye, YAN Xiaobing, LI Yingqiu. Application of ARIMA model in Guangxi short-term power load forecasting[J]. Journal of Changsha University of Electric Power, 2000(2):20-22.
|
[9] |
ZENG P, JIN M, ELAHE M F. Short-term power load forecasting based on cross multi-model and second decision mechanism[J]. IEEE Access, 2020(8):184061-184072.
|
[10] |
周佃民, 管晓宏, 孙婕, 等. 基于神经网络的电力系统短期负荷预测研究[J]. 电网技术, 2002(2):10-13,18.
|
|
ZHOU Dianmin, GUAN Xiaohong, SUN Jie, et al. Research on power system short-term load forecasting based on neural network[J]. Power System Technology, 2002(2):10-13,18.
|
[11] |
吴潇雨, 和敬涵, 张沛, 等. 基于灰色投影改进随机森林算法的电力系统短期负荷预测[J]. 电力系统自动化, 2015, 39(12):50-55.
|
|
WU Xiaoyu, HE Jinghan, ZHANG Pei, et al. Power system short-term load forecasting based on gray projection improved random forest algorithm[J]. Automation of Electric Power Systems, 2015, 39(12):50-55.
|
[12] |
叶淳铮, 常鲜戎, 顾为国. 基于小波变换和支持向量机的电力系统短期负荷预测[J]. 电力系统保护与控制, 2009, 37(14):41-45.
|
|
YE Chunzheng, CHANG Xianrong, GU Weiguo. Power system short-term load forecasting based on wavelet transform and support vector machine[J]. Power System Protection and Control, 2009, 37(14):41-45.
|
[13] |
孔祥玉, 郑锋, 鄂志君, 等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化, 2018, 42(5):133-139.
|
|
KONG Xiangyu, ZHENG Feng, E Zhijun, et al. Short-term load forecasting based on deep belief network[J]. Automation of Electric Power Systems, 2018, 42(5):133-139.
|
[14] |
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8):131-137.
|
|
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8):131-137.
|
[15] |
党存禄, 武文成, 李超锋, 等. 基于CatBoost算法的电力短期负荷预测研究[J]. 电气工程学报, 2020, 15(1):76-82.
|
|
DANG Cunlu, WU Wencheng, LI Chaofeng, et al. Power short-term load forecasting based on CatBoost algorithm[J]. Journal of Electrical Engineering, 2020, 15(1):76-82.
|
[16] |
陈鸿琳, 李欣然, 冷华, 等. 运用PSO和GRNN的短期负荷二维组合预测[J]. 电力系统及其自动化学报, 2018, 30(2):85-89.
|
|
CHEN Honglin, LI Xinran, LENG Hua, et al. Two-dimensional combined forecasting of short-term load using PSO and GRNN[J]. Proceedings of the CSU-EPSA, 2018, 30(2):85-89.
|
[17] |
熊图, 赵宏伟, 蔡智洋, 等. 动态组合深度学习模型在短期负荷及光伏功率预测中的应用[J]. 可再生能源, 2020, 38(4):458-463.
|
|
XIONG Tu, ZHAO Hongwei, CAI Zhiyang, et al. Application of dynamic combination deep learning model in short-term load and photovoltaic power forecasting[J]. Renewable Energy, 2020, 38(4):458-463.
|
[18] |
金樑. SVM与神经网络的组合模型在短期电力负荷预测中的应用研究[D]. 长春:吉林大学, 2018.
|
|
JIN Liang. Application of combined model of SVM and neural network in short-term load forecasting[D]. Changchun:Jilin University, 2018.
|
[19] |
王蒙, 张国友, 田丽, 等. 基于最优组合预测模型的电力负荷预测研究[J]. 重庆工商大学学报, 2012, 29(9):65-69.
|
|
WANG Meng, ZHANG Guoyou, TIAN Li, et al. Research on power load forecasting based on the optimal combination forecasting model[J]. Journal of Chongqing Technology and Business University, 2012, 29(9):65-69.
|
[20] |
彭文, 王金睿, 尹山青. 电力市场中基于Attention- LSTM的短期负荷预测模型[J]. 电网技术, 2019, 43(5):1745-1751.
|
|
PENG Wen, WANG Jinrui, YIN Shanqing. Attention- LSTM-based short-term load forecasting model in the power market[J]. Power System Technology, 2019, 43(5):1745-1751.
|
[21] |
詹英. 组合预测方法在我国人均GDP预测中的应用[D]. 武汉:华中师范大学, 2014.
|
|
ZHAN Ying. Application of combined forecasting method in China’s per capita GDP forecast[D]. Wuhan:Central China Normal University, 2014.
|
[22] |
杨红军, 王胜辉, 李潇潇. 基于最优加权组合模型的光伏出力预测[J]. 沈阳工程学院学报, 2019, 15(4):300-305.
|
|
YANG Hongjun, WANG Shenghui, LI Xiaoxiao. PV output forecasting based on optimal weighted combination model[J]. Journal of Shenyang Institute of Engineering, 2019, 15(4):300-305.
|