电气工程学报 ›› 2021, Vol. 16 ›› Issue (3): 62-69.doi: 10.11985/2021.03.009

• 电力系统 • 上一篇    下一篇

扫码分享

基于LSTM和CatBoost组合模型的短期负荷预测

党存禄1,2,3(), 杨海兰1(), 武文成4   

  1. 1.兰州理工大学电气工程与信息工程学院 兰州 730050
    2.兰州理工大学甘肃省工业过程先进控制重点实验室 兰州 730050
    3.兰州理工大学电气与控制工程国家级实验教学示范中心 兰州 730050
    4.甘肃送变电工程有限公司 兰州 730070
  • 收稿日期:2020-10-29 修回日期:2021-03-28 出版日期:2021-09-25 发布日期:2021-10-29
  • 通讯作者: 杨海兰 E-mail:dcl_1964@163.com;3104067292@qq.com
  • 作者简介:* 杨海兰,女,1987年生,硕士研究生。主要研究方向为配网自动化。E-mail: 3104067292@qq.com
    党存禄,男,1964年生,教授。主要研究方向为新能源发电技术,电力电子与电力传动。E-mail: dcl_1964@163.com

Short-term Load Forecasting Based on LSTM and CatBoost Combined Model

DANG Cunlu1,2,3(), YANG Hailan1(), WU Wencheng4   

  1. 1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050
    2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou 730050
    3. National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou 730050
    4. Gansu Transmission and Transformation Engineering Co., Ltd., Lanzhou 730070
  • Received:2020-10-29 Revised:2021-03-28 Online:2021-09-25 Published:2021-10-29
  • Contact: YANG Hailan E-mail:dcl_1964@163.com;3104067292@qq.com

摘要:

针对现有的电力系统短期负荷预测方法存在预测精度较差的问题,提出一种基于长短期记忆神经网络(Long short term memory,LSTM)和CatBoost组合的短期负荷预测方法,针对电力负荷数据具有时序性和非线性的特点,以及长短期记忆网络不能直接处理类别型特征,对处理后的电力负荷数据建立LSTM负荷预测模型和CatBoost负荷预测模型;用方差倒数法确定加权系数,得到LSTM和CatBoost组合模型的预测值;最后使用实际负荷数据对算法有效性进行验证,预测结果表明采用LSTM和CatBoost组合模型的方法在负荷预测精度上有显著的提高。

关键词: 短期负荷预测, 方差倒数法, LSTM, CatBoost, 组合模型

Abstract:

In view of the poor prediction accuracy of existing short-term load forecasting methods for power systems, a short-term load forecasting method based on the combination of long short term memory (LSTM) and CatBoost is proposed. Firstly, in view of the time-series and nonlinear characteristics of the power load data, and the fact that the long-term and short-term memory networks can not directly deal with the categorical features, the LSTM load forecasting model and the CatBoost load forecasting model are established for the processed power load data. Secondly, the weighted coefficients are determined by the inverse variance method, and the predicted values of the LSTM and CatBoost models are obtained. Finally, the validity of the algorithm is verified by the actual load data. The prediction results show that the combined model of LSTM and CatBoost can significantly improve the accuracy of load forecasting.

Key words: Short-term load forecasting, reciprocal variance method, LSTM, CatBoost, combined model

中图分类号: