电气工程学报 ›› 2015, Vol. 10 ›› Issue (10): 59-63.

• 理论研究 • 上一篇    下一篇

基于径向基神经网络辨识的电弧炉电极调节系统内模控制

程少帅1,马开明2   

  1. 1. 沈阳众义达科技有限公司 沈阳 110004
    2. 中核核电运行管理有限公司 嘉兴 314300
  • 收稿日期:2015-03-05 出版日期:2015-10-25 发布日期:2020-01-03
  • 作者简介:程少帅 男 1984年生,工程硕士,研究方向为智能家居及物联网行业等。|马开明, 男 1983年生,工学学士,研究方向为核电领域。

IMC of the Electric Arc Furnace Electrode Regulator System Based on RBF Neural Network Identification

Cheng Shaoshuai1,Ma Kaiming2   

  1. 1. Shenyang Zhong Yida Technology Co., Ltd. Shenyang 110004 China
    2. China Nuclear Power Operation Management Ltd. Jiaxing 314300 China
  • Received:2015-03-05 Online:2015-10-25 Published:2020-01-03

摘要:

处理非线性和电弧炉电极调节系统的时变特性,内模控制器的设计。该控制器由两个RBF神经网络,用来确定控制对象和它的逆,以消除稳态误差,让输出跟踪输入。中心向量和网络的形状参数进行在线调节,从而加快了收敛速度,提高了抗干扰能力。仿真结果验证了该方法的有效性。

关键词: 内模控制, RBF神经网络, 在线调整, 非线性时变

Abstract:

To deal with the nonlinear and time-variant characteristic of the electrode regulator system in arc furnace, an IMC controller is designed. The controller composes by two RBF neural networks, which are used to identify the controlled object and its inverse, from this to eliminate steady-state error and let output track input. Center vectors and the shape parameters of the networks are adjusted online, which speeds up the convergence rate and improves anti-jamming capability. Simulation results verify the effectiveness of the method.

Key words: IMC control, RBF neural network, adjust online, nonlinear and time-variant

中图分类号: