Journal of Electrical Engineering ›› 2022, Vol. 17 ›› Issue (3): 194-202.doi: 10.11985/2022.03.023
Previous Articles Next Articles
WU Yongquan1(), ZHANG Siwei1(
), PENG Chong1(
), JIAO Liangbao2(
), PU Dong2(
)
Received:
2021-01-29
Revised:
2022-04-16
Online:
2022-09-25
Published:
2022-10-28
CLC Number:
WU Yongquan, ZHANG Siwei, PENG Chong, JIAO Liangbao, PU Dong. Research on Visual Hierarchical Early Warning of Transmission Line Channel Combined with Scene Analysis[J]. Journal of Electrical Engineering, 2022, 17(3): 194-202.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
原YOLOv3目标检测网络 | 加入难负样本挖掘策略 | ||||
---|---|---|---|---|---|
隐患目标类别 | 查全率 | 查准率 | 隐患目标类别 | 查全率 | 查准率 |
烟雾 | 0.831 | 0.852 | 烟雾 | 0.853 | 0.922 |
山火 | 0.923 | 0.922 | 山火 | 0.942 | 0.965 |
异物 | 0.803 | 0.723 | 异物 | 0.806 | 0.731 |
吊车 | 0.872 | 0.885 | 吊车 | 0.914 | 0.903 |
混凝土浇灌车 | 0.891 | 0.858 | 混凝土浇灌车 | 0.926 | 0.873 |
混凝土搅拌车 | 0.908 | 0.839 | 混凝土搅拌车 | 0.956 | 0.862 |
挖掘机 | 0.912 | 0.901 | 挖掘机 | 0.934 | 0.905 |
铲车 | 0.781 | 0.752 | 铲车 | 0.783 | 0.737 |
[1] | 段家振. 试析输电线路通道可视化系统关键技术[J]. 科技创新与应用, 2019(30):151-152. |
DUAN Jiazhen. Analysis of key technologies of transmission line channel visualization system[J]. Science & Technology Innovation and Application, 2019(30):151-152. | |
[2] | 王炜, 王树军, 徐硕, 等. 输电线路通道可视化运维管理体系的应用[J]. 电气时代, 2018(11):77-79. |
WANG Wei, WANG Shujun, XU Shuo, et al. Application of visual operation and maintenance management system for transmission line channels[J]. Electric Times, 2018(11):77-79. | |
[3] | 吕志来, 刘浩, 李海, 等. 输电线路通道可视化系统关键技术研究及实践[J]. 电力信息与通信技术, 2016, 14(9):52-57. |
LÜ Zhilai, LIU Hao, LI Hai, et al. Research and practice on key technologies of transmission line channel visualization system[J]. Electric Power Information and Communication Technology, 2016, 14(9):52-57. | |
[4] | 叶俊健, 邓伟锋, 徐常志, 等. 基于深度强化学习与图像智能识别的输电线路在线监测系统[J]. 工业技术创新, 2020, 7(3):72-75. |
YE Junjian, DENG Weifeng, XU Changzhi, et al. Transmission line online monitoring system based on deep reinforcement learning and image intelligent recognition[J]. Industrial Technology Innovation, 2020, 7(3):72-75. | |
[5] | 孟秀军, 谷连军. 基于Skyline的输电线路巡检数据可视化系统研究[J]. 信息与电脑, 2020, 32(6):141-144. |
MENG Xiujun, GU Lianjun. Research on transmission line inspection data visualization system based on Skyline[J]. Information and Computer, 2020, 32(6):141-144. | |
[6] | 徐常志, 邓伟锋, 李耀均, 等. 输电线路图像可视化监测终端无线通信解决方案[J]. 工业技术创新, 2020, 7(6):99-102,111. |
XU Changzhi, DENG Weifeng, LI Yaojun, et al. Wireless communication solution for visualized monitoring terminal of transmission line image[J]. Industrial Technology Innovation, 2020, 7(6):99-102,111. | |
[7] | 曾昌健, 李丽, 郑国华, 等. 基于VR技术的输电线路运检一体化研究[J]. 山东农业大学学报, 2021, 52(2):304-307. |
ZENG Changjian, LI Li, ZHENG Guohua, et al. Study on the integration of transmission line transport and inspection based on VR technology[J]. Journal of Shandong Agricultural University, 2021, 52(2):304-307. | |
[8] | 江泽涛, 秦嘉奇, 胡硕. 基于多路卷积神经网络的多光谱场景识别方法[J]. 计算机科学, 2019, 46(9):265-270. |
JIANG Zetao, QIN Jiaqi, HU Shuo. Multi-spectral scene recognition method based on multi-channel convolutional neural network[J]. Computer Science, 2019, 46(9):265-270. | |
[9] | 戴玉超, 张静, 何明一. 深度残差网络的多光谱遥感图像显著目标检测[J]. 测绘学报, 2018, 47(6):873-881. |
DAI Yuchao, ZHANG Jing, HE Mingyi. The salient target detection of multispectral remote sensing image based on deep residual network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):873-881. | |
[10] | 李一松. 基于卷积神经网络的多光谱图像多标签场景分类[J]. 电子设计工程, 2018, 26(23):25-29. |
LI Yisong. Multi-spectral image multi-label scene classification based on convolutional neural network[J]. Electronic Design Engineering, 2018, 26(23):25-29. | |
[11] | 江泽涛, 刘小艳, 胡硕. 基于 CNN 的红外与可见光融合图像的场景识别[J]. 计算机工程与设计, 2019:2289-2294. |
JIANG Zetao, LIU Xiaoyan, HU Shuo. Scene recognition of infrared and visible light fusion image based on CNN[J]. Computer Engineering and Design, 2019:2289-2294. | |
[12] | 张忠星, 李鸿龙, 张广乾, 等. CCNet:面向多光谱图像的高速船只检测级联卷积神经网络[J]. 红外与毫米波学报, 2019(3):290-294. |
ZHANG Zhongxing, LI Honglong, ZHANG Guangqian, et al. CCNet:High-speed ship detection cascaded convolutional neural network for multispectral image[J]. Journal of Infrared and Millimeter Waves, 2019(3):290-294.
doi: 10.11972/j.issn.1001-9014.2019.03.006 |
|
[13] | 姚建华, 吴加敏, 杨勇, 等. 全卷积神经网络下的多光谱遥感影像分割[J]. 中国图象图形学报, 2020, 25(1):180-192. |
YAO Jianhua, WU Jiamin, YANG Yong, et al. Multispectral remote sensing image segmentation under a fully convolutional neural network[J]. China Journal of Graphic Graphics, 2020, 25(1):180-192. | |
[14] | 刘佶鑫, 魏嫚. 可见光-近红外HSV融合的场景类字典稀疏识别[J]. 计算机应用, 2018, 38(12):3359-3366. |
LIU Jixin, WEI Man. Sparse recognition of scene dictionary based on visible light-near infrared HSV fusion[J]. Journal of Computer Applications, 2018, 38(12):3359-3366. | |
[15] | REDMON J, FARHADI A. YOLO9000:Better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:7263-7271. |
[16] | 赵飞扬, 罗兵, 林国军, 等. 基于改进YOLOv3的火焰检测[J]. 中国科技论文, 2020, 15(7):820-826. |
ZHAO Feiyang, LUO Bing, LIN Guojun, et al. Based on improved flame detection of YOLOv3[J]. Chinese Science and Technology Papers, 2020, 15(7):820-826. | |
[17] | 钟映春, 孙思语, 吕帅, 等. 铁塔航拍图像中鸟巢的YOLOv3识别研究[J]. 广东工业大学学报, 2020, 37(3):42-48. |
ZHONG Yingchun, SUN Siyu, LÜ Shuai, et al. Research on YOLOv3 recognition of bird’s nest in aerial images of iron tower[J]. Journal of Guangdong University of Technology, 2020, 37(3):42-48. | |
[18] | 于晓英, 苏宏升, 姜泽, 等. 基于 YOLO 的铁路侵限异物检测方法[J]. 兰州交通大学学报, 2020, 39(2):37-42. |
YU Xiaoying, SU Hongsheng, JIANG Ze, et al. YOLO-based railway intrusion detection method for foreign bodies[J]. Journal of Lanzhou Jiaotong University, 2020, 39(2):37-42. | |
[19] | 刘肯, 何姣姣, 张永平, 等. 改进 YOLO 的车辆检测算法[J]. 现代电子技术, 2019, 42(13):47-50. |
LIU Ken, HE Jiaojiao, ZHANG Yongping, et al. Improved YOLO vehicle detection algorithm[J]. Modern Electronics Technique, 2019, 42(13):47-50. | |
[20] | 江枭宇, 李忠兵, 张军豪, 等. 基于NCS2神经计算棒的车辆检测方法[J]. 计算机工程, 2021, 47(3):298-303. |
JIANG Xiaoyu, LI Zhongbing, ZHANG Junhao, et al. Vehicle detection method based on NCS2 neural computing stick[J]. Computer Engineering, 2021, 47(3):298-303. | |
[21] | 李清, 杨晓辉, 刘振声, 等. 基于灰色聚类分析的输电线路舞动分级预警方案[J]. 电测与仪表, 2020, 57(17):45-51. |
LI Qing, YANG Xiaohui, LIU Zhensheng, et al. Graded early warning scheme for transmission line galloping based on gray cluster analysis[J]. Electrical Measurement and Instrumentation, 2020, 57(17):45-51. | |
[22] |
徐铭铭, 牛荣泽, 谢芮芮, 等. 多源信息融合的配电网重复多发性停电在线监测与预警技术[J]. 山东科学, 2020, 33(4):117-123.
doi: 10.3976/j.issn.1002-4026.2020.04.015 |
XU Mingming, NIU Rongze, XIE Ruirui, et al. Multi-source information fusion online monitoring and early warning technology for repetitive power outages in distribution networks[J]. Shandong Science, 2020, 33(4):117-123.
doi: 10.3976/j.issn.1002-4026.2020.04.015 |
|
[23] | 陈尚, 蒋毅, 宋珍. 电力电缆火灾风险评价模型与预警信号分级[J]. 南方电网技术, 2020, 14(4):3-7,16. |
CHEN Shang, JIANG Yi, SONG Zhen. Power cable fire risk evaluation model and early warning signal classification[J]. Southern Grid Technology, 2020, 14(4):3-7,16. |
[1] | LIU Zhen, HU Sanbao, HU Junhua, XIANG Chao. Dynamic Modeling and Analysis of Rigid Multi-body System with Clearance Joints Based on Deep Learning [J]. Journal of Mechanical Engineering, 2022, 58(9): 136-146. |
[2] | ZHANG Shi-jun, JIN Zhen-lin. Casting Defect Detection Method Based on Multi Model Cascade and Binocular Vision [J]. Journal of Mechanical Engineering, 2022, 58(5): 34-43. |
[3] | LIU Chenguang, GUO Juehan, WU Yong, CHU Xiumin, WU Wenxiang, LEI Chaofan. 3D LiDAR Based Real-time Object Recognition System for Unmanned Surface Vehicles [J]. Journal of Mechanical Engineering, 2022, 58(4): 202-211. |
[4] | LI Yuansong, DING Jinjin, XU Chen, GAO Bo, TANG Hansong, SHAN Rongrong. State Detection Method of Smart Substation Equipment Based on Intelligent Perception and Deep Learning [J]. Journal of Electrical Engineering, 2022, 17(2): 208-214. |
[5] | CHEN Honghua, WEI Zeyong, XIE Qian, WEI Mingqiang, WANG Jun. Method for Extracting Multiple Circle Primitives Extraction of Aircraft Surface Based on 3D Point Cloud Deep Learning [J]. Journal of Mechanical Engineering, 2022, 58(14): 190-202. |
[6] | LIU Hao, XU Ying, LUO Yangquan, XIAO Haishan. Permeability Prediction of Porous Media Using Deep-learning Method [J]. Journal of Mechanical Engineering, 2022, 58(14): 328-336. |
[7] | TANG Xinzi, GU Nengwei, HUANG Xuanqing, PENG Ruitao. Progress on Short Term Wind Power Forecasting Technology [J]. Journal of Mechanical Engineering, 2022, 58(12): 213-236. |
[8] | DU Liuqing, HU Jie, YU Yongwei. Prediction of Machine Tool's Motion Accuracy Deterioration Based on Chaotic Evolution of Thermal Error [J]. Journal of Mechanical Engineering, 2022, 58(11): 231-240. |
[9] | DENG Baoyuan, HE Yunze, WANG Hongjin, ZHANG Hong, YANG Yuan, MA Minmin, MU Xinying, YANG Ruizhen. Deep Learning Inspection for Photovoltaic Cell Image Sequence [J]. Journal of Mechanical Engineering, 2021, 57(8): 98-106. |
[10] | GONG Wenfeng, WANG Yuanzhe, CHEN Hui, WANG Danwei. Anomaly Diagnosis for Navigation Sensors of Unmanned Autonomous Vehicles Based on Deep Learning [J]. Journal of Mechanical Engineering, 2021, 57(24): 268-278. |
[11] | ZHAO Zijing, LIU Hongzhe, CAO Dongpu. Improved Traffic Sign Detection Algorithm Based on Libra R-CNN [J]. Journal of Mechanical Engineering, 2021, 57(22): 255-265. |
[12] | WANG Jiujian, YANG Shaopu, LIU Yongqiang, WEN Guilin. A Method of Bearing Remaining Useful Life Estimation Based on Convolutional Long Short-term Memory Neural Network [J]. Journal of Mechanical Engineering, 2021, 57(21): 88-95. |
[13] | JIN Peng, HUANG Hao, LIU Jianhua, LIU Shaoli, FANG Yue, HE Sen, QI Huizhi, LIU Wei. Fault Detection Method of Railway Fastener Combined with Multi-sensor Information [J]. Journal of Mechanical Engineering, 2021, 57(20): 38-46. |
[14] | ZHAO Shuxuan, ZHANG Jie, WANG Junliang, XU Chuqiao. Fabric Defect Detection Algorithm Based on Two-stage Deep Transfer Learning [J]. Journal of Mechanical Engineering, 2021, 57(17): 86-97. |
[15] | LIN Tianliang, YAO Yu, XU Wenjie, FU Shengjie, REN Haoling, CHEN Qihuai. Driverless Walking Method of Electric Construction Machinery Based on Environment Recognition [J]. Journal of Mechanical Engineering, 2021, 57(10): 42-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||