Journal of Electrical Engineering ›› 2024, Vol. 19 ›› Issue (1): 49-56.doi: 10.11985/2024.01.005
Previous Articles Next Articles
YU Miao(), ZHU Yuhao(
), GU Xin(
), SHANG Yunlong(
)
Received:
2023-12-25
Revised:
2023-01-30
Online:
2024-03-25
Published:
2024-04-25
CLC Number:
YU Miao, ZHU Yuhao, GU Xin, SHANG Yunlong. Remaining Useful Life Prediction of Lithium-ion Batteries Based on Expansion Stress[J]. Journal of Electrical Engineering, 2024, 19(1): 49-56.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
电池 编号 | 训练集 占比(%) | 预测 方法 | RUL 预测值 | RMSE (%) | MAE (%) | AE |
---|---|---|---|---|---|---|
01 | 45 | A | 154 | 0.554 | 0.412 | 7 |
B | 161 | 0.896 | 0.634 | 14 | ||
55 | A | 110 | 0.358 | 0.298 | 2 | |
B | 124 | 0.778 | 0.516 | 10 | ||
05 | 45 | A | 122 | 0.474 | 0.410 | 10 |
B | 112 | 0.892 | 0.750 | 20 | ||
55 | A | 100 | 0.420 | 0.384 | 3 | |
B | 112 | 0.660 | 0.532 | 15 | ||
09 | 45 | A | 62 | 0.818 | 0.699 | 4 |
B | 74 | 2.182 | 1.860 | 16 | ||
55 | A | 47 | 0.490 | 0.458 | 2 | |
B | 52 | 1.176 | 1.015 | 7 | ||
10 | 45 | A | 195 | 0.480 | 0.368 | 4 |
B | 242 | 1.486 | 1.026 | 51 | ||
55 | A | 150 | 0.296 | 0.268 | 3 | |
B | 157 | 0.501 | 0.394 | 10 |
[1] | 梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状[J]. 浙江电力, 2020, 39(3):75-81. |
MEI Jian, ZHANG Jie, LIU Shuangyu, et al. Development status of battery energy storage technology[J]. Zhejiang Electric Power, 2020, 39(3):75-81. | |
[2] | 陈琳, 陈静, 王惠民, 等. 基于小波包能量熵的电池剩余寿命预测[J]. 电工技术学报, 2020, 35(8):1827-1835. |
CHEN Lin, CHEN Jing, WANG Huimin, et al. Prediction of battery remaining useful life based on wavelet packet energy entropy[J]. Transactions of China Electrotechnical Society, 2020, 35(8):1827-1835. | |
[3] |
LI Junfu, LYU Chao, WANG Lixin, et al. Remaining capacity estimation of Li-ion batteries based on temperature sample entropy and particle filter[J]. Journal of Power Sources, 2014, 268(5):895-903.
doi: 10.1016/j.jpowsour.2014.06.133 |
[4] |
XING Yinjiao, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6):811-820.
doi: 10.1016/j.microrel.2012.12.003 |
[5] |
LYU Chao, LAI Qingzhi, GE Tengfei, et al. A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework[J]. Energy, 2017, 120(1):975-984.
doi: 10.1016/j.energy.2016.12.004 |
[6] |
LIU Zhenbao, SUN Gaoyuan, BU Shuhui, et al. Particle learning framework for estimating the remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2):280-293.
doi: 10.1109/TIM.2016.2622838 |
[7] | XU Xin, CHEN Nan. A state-space-based prognostics model for lithium-ion battery degradation[J]. Reliability Engineering & System Safety, 2017,159:47-57. |
[8] |
WAAG W, FLEISCHER C, SAUER D U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258(14):321-339.
doi: 10.1016/j.jpowsour.2014.02.064 |
[9] |
NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239(1):680-688.
doi: 10.1016/j.jpowsour.2012.11.146 |
[10] |
ZHANG Yongzhi, XIONG Rui, HE Hongwen, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7):5695-5705.
doi: 10.1109/TVT.25 |
[11] | 尤贺泽, 戴海峰, 于臣臣, 等. 软包锂离子电池应力特性及其建模[J]. 同济大学学报, 2020, 48(2):231-240. |
YOU Heze, DAI Haifeng, YU Chenchen, et al. Stress properties and modeling of lithium-ion pouch batteries[J]. Journal of Tongji University, 2020, 48(2):231-240. | |
[12] |
CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of Power Sources, 2014, 245(1):745-751.
doi: 10.1016/j.jpowsour.2013.06.165 |
[13] |
CANNARELLA J, ARNOLD C B. State of health and charge measurements in lithium-ion batteries using mechanical stress[J]. Journal of Power Sources, 2014, 269(10):7-14.
doi: 10.1016/j.jpowsour.2014.07.003 |
[14] |
XU Jun, LIU Binghe, HU Dayong. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries[J]. Scientific Reports, 2016, 6(1):21829.
doi: 10.1038/srep21829 |
[15] | MOHTAT P, LEE S, SIEGEL J, et al. Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors[J]. Journal of the Electrochemical Society, 2021,168:100520. |
[16] |
WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1998, 1(2):270-280.
doi: 10.1162/neco.1989.1.2.270 |
[17] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[18] | WANG Xianming, SONE Y, SEGAMI G, et al. Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements[J]. Journal of the Electrochemical Society, 2007, 154(1):A14. |
[19] |
牛少军, 吴凯, 朱国斌, 等. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9):2989-2994.
doi: 10.19799/j.cnki.2095-4239.2022.0194 |
NIU Shaojun, WU Kai, ZHU Guobin, et al. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9):2989-2994.
doi: 10.19799/j.cnki.2095-4239.2022.0194 |
|
[20] | 耿鑫月, 胡昌华, 郑建飞, 等. 双时间尺度下基于Transformer的锂电池剩余寿命预测[J]. 空间控制技术与应用, 2023, 49(4):119-126. |
GENG Xinyue, HU Changhua, ZHENG Jianfei, et al. Remaining life prediction of lithium batteries based on transformer at dual time scales[J]. Aerospace Control and Application, 2023, 49(4):119-126. | |
[21] | 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15):3753-3766. |
HUANG Kai, DING Heng, GUO Yongfang, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15):3753-3766. | |
[22] | 李练兵, 祝亚尊, 田永嘉, 等. 基于Elman神经网络的锂离子电池RUL间接预测研究[J]. 电源技术, 2019, 43(6):1027-1031. |
LI Lianbing, ZHU Yazun, TIAN Yongjia, et al. RUL indirect prediction of lithium-ion battery based on Elman neural network[J]. Chinese Journal of Power Sources, 2019, 43(6):1027-1031. | |
[23] | 叶林峰, 石元博, 黄越洋. 基于BiGRU网络的锂电池寿命预测[J]. 电源技术, 2021, 45(5):598-601. |
YE Linfeng, SHI Yuanbo, HUANG Yueyang. Lithium battery life prediction based on BiGRU network[J]. Chinese Journal of Power Sources, 2021, 45(5):598-601. |
[1] | JIN Jianxin, YU Ruxin, LIU Gang, XU Linbo, MA Yanqiang, WANG Haobin, HU Chen. Research Progress on State-of-health Estimating Method for Lithium-ion Batteries [J]. Journal of Electrical Engineering, 2024, 19(1): 33-48. |
[2] | ZHU Yuhao, WANG Teng, GU Xin, HOU Linfei, SHANG Yunlong. Personalized Retiring and Assessing Methods for Lithium-ion Batteries within the Full Lifespan [J]. Journal of Electrical Engineering, 2024, 19(1): 79-86. |
[3] | LIU Xinming, JI Jianguang, LI Wei, SHI Guangci. Short-term Load Forecasting for Power Substations Based on Bimodal Decomposition [J]. Journal of Electrical Engineering, 2024, 19(1): 124-132. |
[4] | YU Quanqing, WANG Can, LI Jianming, TANG Aihua, ZHAO Lijun. Model Evaluation and Analysis for Multi-topology Lithium Battery Pack External Short Circuit Characteristics [J]. Journal of Mechanical Engineering, 2023, 59(6): 159-172. |
[5] | YANG Xulai, YUAN Shuaishuai, YANG Wenjing, LIU Chuang, YANG Shichun. Research Progress on Energy Density of Li-ion Batteries for Evs [J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254. |
[6] | YAN Runbo, SUN Liqing, YANG Ruixin, XIONG Rui. Evaluation of Model for External Short Circuit Voltage Behavior Prediction of Lithium-ion Batteries [J]. Journal of Mechanical Engineering, 2023, 59(2): 199-211. |
[7] | WEI Zhongbao, ZHONG Hao, HE Hongwen. Multiphysics-constrained Optimal Charging of Lithium-ion Battery [J]. Journal of Mechanical Engineering, 2023, 59(2): 223-232. |
[8] | PANG Zhenan, PEI Hong, LI Tianmei, HU Changhua, SI Xiaosheng. Remaining Useful Lifetime Prognostic Approach for Stochastic Degradation Equipment Considering Imperfect Maintenance Activities [J]. Journal of Mechanical Engineering, 2023, 59(2): 14-29. |
[9] | LIU Xinhua, GUO Bin, HE Rong, JIA Pu, LIU Xiaochuan, GUO Yazhou, YANG Shichun. Research on Dynamic Impact Performance of Light-UAV Battery [J]. Journal of Mechanical Engineering, 2023, 59(2): 177-186. |
[10] | LIU Yiqun, LI Mengmeng, LIU Tao, YANG Na, LI Weihua, WANG Jianfeng. Estimation of Power Battery State of Charge under Current Signal Sampling Deviation [J]. Journal of Mechanical Engineering, 2023, 59(16): 288-299. |
[11] | XIE Jiale, LI Zengchao, WANG Guang, YAO Tianqi. Internal and External Temperature Prediction Models for 18650 Li-ion Battery Based on Electrical-thermal Coupled Effects [J]. Journal of Mechanical Engineering, 2023, 59(16): 342-352. |
[12] | SHEN Tianhao, DING Kang, LI Jie, HUANG Ruyi, LI Weihua. Graph Structure and Temporal Data Driven Remaining Useful Life Prediction Method for Machinery [J]. Journal of Mechanical Engineering, 2023, 59(12): 183-194. |
[13] | YANG Chaoying, LIU Jie, ZHOU Kaibo. Path Graph Attention Network-based Bearing Remaining Useful Life Prediction Method [J]. Journal of Mechanical Engineering, 2023, 59(12): 195-201. |
[14] | LI Yanmei, LIU Huihan, ZHANG Chaolong, LUO Laijing. Lithium-ion Battery RUL Prediction Method Based on Double Gaussian Model [J]. Journal of Electrical Engineering, 2022, 17(4): 32-40. |
[15] | LIU Wangzeyu, LI Qing, YU Tiantian, XIONG Jinchen, ZHANG Hongyuan, DONG Ming, REN Ming. Study on Impedance Characteristics of Lithium-ion Battery in Over Discharge State [J]. Journal of Electrical Engineering, 2022, 17(4): 51-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||