Journal of Electrical Engineering ›› 2023, Vol. 18 ›› Issue (3): 332-340.doi: 10.11985/2023.03.035
Previous Articles Next Articles
ZHOU Hang1(), LIU Xiaolong1(
), ZHANG Mengdi1(
), SUN Jinlei1(
), CHENG Ze2(
)
Received:
2023-04-14
Revised:
2023-05-22
Online:
2023-09-25
Published:
2023-10-23
CLC Number:
ZHOU Hang, LIU Xiaolong, ZHANG Mengdi, SUN Jinlei, CHENG Ze. Joint SOC and SOH Estimation Method for Energy Storage Lithium-ion Batteries Based on Simple Recurrent Unit[J]. Journal of Electrical Engineering, 2023, 18(3): 332-340.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7):1703-1725. |
WU Longxing, PANG Hui, JIN Jiamin, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7):1703-1725. | |
[2] |
TIAN Huixin, QIN Pengliang, LI Kun, et al. A review of the state of health for lithium-ion batteries:Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261(1):120813.
doi: 10.1016/j.jclepro.2020.120813 |
[3] | 李哲, 卢兰光, 欧阳明高. 提高安时积分法估算电池SOC精度的方法比较[J]. 清华大学学报, 2010, 50(8):1293-1296,1301. |
LI Zhe, LU Languang, OUYANG Minggao. Comparison of methods for improving SOC estimation accuracy through an ampere-hour integeration approach[J]. Journal of Tsinghua University, 2010, 50(8):1293-1296,1301. | |
[4] |
CHEN Xiaokai, LEI Hao, XIONG Rui, et al. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles[J]. Applied Energy, 2019, 255:113758.
doi: 10.1016/j.apenergy.2019.113758 |
[5] |
DONG Xile, ZHANG Caiping, JIANG Jiuchun. Evaluation of SOC estimation method based on EKF/AEKF under noise interference[J]. Energy Procedia, 2018, 152:520-525.
doi: 10.1016/j.egypro.2018.09.204 |
[6] |
WU Chunling, HU Wenbo, MENG Jinhao, et al. State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment[J]. Energy, 2023, 274:127316.
doi: 10.1016/j.energy.2023.127316 |
[7] | 郭向伟, 邢程, 司阳, 等. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37(16):4029-4037. |
GUO Xiangwei, XING Cheng, SI Yang, et al. RLS adaptive equivalent circuit model of lithium battery under full working condition[J]. Transactions of China Electrotechnical Society, 2022, 37(16):4029-4037. | |
[8] |
DENG Zhongwei, HU Xiaosong, LIN Xianke, et al. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression[J]. Energy, 2020, 205:118000.
doi: 10.1016/j.energy.2020.118000 |
[9] |
LUO Kai, CHEN Xiang, ZHENG Huiru, et al. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74(11):159-173.
doi: 10.1016/j.jechem.2022.06.049 |
[10] |
JIAO Meng, WANG Dongqing, QIU Jianlong. A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources, 2020, 459:228051.
doi: 10.1016/j.jpowsour.2020.228051 |
[11] |
SHEN Liyuan, LI Jingjing, LIU Jieyan, et al. Temperature adaptive transfer network for cross-domain state-of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Power Electronics, 2023, 38(3):3857-3869.
doi: 10.1109/TPEL.2022.3220760 |
[12] |
WANG Jia, ZHAO Rui, HUANG Qiuan, et al. High-efficient prediction of state of health for lithium-ion battery based on AC impedance feature tuned with Gaussian process regression[J]. Journal of Power Sources, 2023, 561:232737.
doi: 10.1016/j.jpowsour.2023.232737 |
[13] |
HAN Qiaoni, JIANG Fan, CHENG Ze. The state of health estimation framework for lithium-ion batteries based on health feature extraction and construction of mixed model[J]. Journal of the Electrochemical Society, 2021, 168(7):070509.
doi: 10.1149/1945-7111/ac0e4c |
[14] |
TSENG K, LIANG Jinwei, CHANG W, et al. Regression models using fully discharged voltage and internal resistance for state of health estimation of lithium-ion batteries[J]. Energies, 2015, 8(4):2889-2907.
doi: 10.3390/en8042889 |
[15] | LIU Datong, ZHOU Jianbao, LIAO Haitao, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2015, 45(6):915-928. |
[16] |
LIU Jiazhi, LIU Xintian. An improved method of state of health prediction for lithium batteries considering different temperature[J]. Journal of Energy Storage, 2023, 63:107028.
doi: 10.1016/j.est.2023.107028 |
[17] | 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19):4106-4119. |
LI Chaoran, XIAO Fei, FAN Yaxiang, et al. An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19):4106-4119. | |
[18] | 王萍, 彭香园, 程泽, 等. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3):362-371,378. |
WANG Ping, PENG Xiangyuan, CHENG Ze, et al. A multi-time scale joint state estimation method for lithium-ion batteries based on data-driven model fusion[J]. Automotive Engineering, 2022, 44(3):362-371,378. | |
[19] | 杨爽, 曾向阳. 基于多尺度稀疏简单循环单元模型的水声目标识别方法[J]. 哈尔滨工程大学学报, 2022, 43(7):958-964. |
YANG Shuang, ZENG Xiangyang. Underwater acoustic target recognition method based on multi-scale sparse simple recurrent unit model[J]. Journal of Harbin Engineering University, 2022, 43(7):958-964. | |
[20] |
GONG Qingrui, WANG Ping, CHENG Ze. A data-driven model framework based on deep learning for estimating the states of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169:030532.
doi: 10.1149/1945-7111/ac5bac |
[21] | BIRKL C. Oxford battery degradation dataset 1[Z]. Oxford:University of Oxford, 2017. |
[22] |
DONG Guangzhong, CHEN Zonghai, WEI Jingwen, et al. Battery health prognosis using Brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):8646-8655.
doi: 10.1109/TIE.41 |
[23] |
HONG J, LEE D, JEONG E R, et al. Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning[J]. Applied Energy, 2020, 278:115646.
doi: 10.1016/j.apenergy.2020.115646 |
[1] | Kuijie Li, Yalun Li, Xinyu Rui, Yuancheng Cao, Liyun Fan, Xuning Feng. Experimental Study on the Effect of State of Charge on Failure Propagation Characteristics within Battery Modules* [J]. Chinese Journal of Electrical Engineering, 2023, 9(3): 3-14. |
[2] | WANG Zhenpo, WANG Qiushi, LIU Peng, ZHANG Zhaosheng. Review on Techniques for Power Battery State of Health Estimation Driven by Big Data Methods [J]. Journal of Mechanical Engineering, 2023, 59(2): 151-168. |
[3] | Jyoti Gupta, Rakesh Maurya, Sabha Raj Arya. Designing an On-board Charger to Efficiently Charge Multiple Electric Vehicles [J]. Chinese Journal of Electrical Engineering, 2023, 9(2): 38-56. |
[4] | YANG Songyuan, TIAN Yong, TIAN Jindong. State of Health Estimation of Lithium-ion Batteries Based on iCEEMDAN and Transfer Learning [J]. Journal of Electrical Engineering, 2022, 17(4): 2-10. |
[5] | FANG Deyu, CHU Xiao, LIU Tao, LI Junfu. Research on Health Assessment Method of Lithium-ion Battery Based on Data-model Hybrid Drive [J]. Journal of Electrical Engineering, 2022, 17(4): 20-31. |
[6] | XU Maoshu, SHEN Yi, WANG Sheng, ZHANG E, LI Haomiao, ZHOU Min, WANG Wei, WANG Kangli, JIANG Kai. Application and Enlightenment of Advanced Sensing Technology in Battery State Estimation [J]. Journal of Electrical Engineering, 2022, 17(3): 40-57. |
[7] | DANG Yuemao, ZHANG Xuechun, XU Chuyi, JIANG Quanyuan. Lithium-ion Battery State of Health Assessment Algorithm Based on DT Curve [J]. Journal of Electrical Engineering, 2022, 17(3): 58-65. |
[8] | WU Chunling, CHENG Yanqing, XU Xianfeng, MENG Jinhao, XIE Meimei. SOC Estimation of Lithium Battery Based on Monte Carlo and SH-AUKF Algorithm [J]. Journal of Electrical Engineering, 2022, 17(3): 66-75. |
[9] | CHE Yunhong, DENG Zhongwei, LI Jiacheng, XIE Yi, HU Xiaosong. Generalized Data-driven SOH Estimation Method for Battery Systems [J]. Journal of Mechanical Engineering, 2022, 58(24): 253-263. |
[10] | LI Honggang, ZHANG Chao, CAO Junchao, ZHOU Dian, ZHANG Meihe. Advances and Perspectives on Modeling Methods for Collision Safety of Lithium-ion Batteries [J]. Journal of Mechanical Engineering, 2022, 58(24): 121-144. |
[11] | TANG Xin, OUYANG Quan, HUANG Lang-hui, WANG Zhi-sheng, MA Rui. Fast Charging Control for Lithium-ion Batteries Based on Deep Reinforcement Learning [J]. Journal of Mechanical Engineering, 2022, 58(22): 69-78. |
[12] | HONG Yan, ZHOU Long, ZHANG Jun, LI Xiangjun, WANG Xiangjin, MA Yuhan, ZHENG Yuejiu. Study on Mechanical Pressure Characteristics of Charge and Discharge of Lithium-ion Battery [J]. Journal of Mechanical Engineering, 2022, 58(20): 410-420. |
[13] | ZHANG Bozhao, GOU Bin, XU Yanzhang. Effect Analysis of Recycling and Storage Conditions on Graphite/LiCoO2 Battery Life [J]. Journal of Electrical Engineering, 2022, 17(2): 38-48. |
[14] | ZHANG Chaolong, ZHAO Shaishai, HE Yigang. State-of-health Estimate for Lithium-ion Battery Using Information Entropy and PSO-LSTM [J]. Journal of Mechanical Engineering, 2022, 58(10): 180-190. |
[15] | CHEN Cheng, PI Zhiyong, ZHAO Yinglong, LIAO Xuan, ZHANG Mingmin, LI Yong. State of Charge Estimation with Adaptive Cataclysm Genetic Algorithm-recurrent Neural Network for Li-ion Batteries [J]. Journal of Electrical Engineering, 2022, 17(1): 86-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||