Journal of Electrical Engineering ›› 2024, Vol. 19 ›› Issue (1): 281-289.doi: 10.11985/2024.01.030
Previous Articles Next Articles
XIE Qian1(), XU Haolan1(
), WANG Tong2(
), ZHAO Fashou3(
), ZHANG Gang1(
), DANG Jian1(
)
Received:
2023-10-24
Revised:
2023-12-01
Online:
2024-03-25
Published:
2024-04-25
CLC Number:
XIE Qian, XU Haolan, WANG Tong, ZHAO Fashou, ZHANG Gang, DANG Jian. Disconnector Fault Diagnosis Method Based on Autonomous-cognition Deep Temporal Clustering Representation[J]. Journal of Electrical Engineering, 2024, 19(1): 281-289.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 构建基于“大云物移智”等现代信息通信技术的智能运检体系[J]. 电力设备管理, 2019,4:26-27. |
Construction of intelligent operation inspection system based on modern information and communication technologies such as “big cloud and object mobile intelligence”[J]. Electric Power Equipment Management, 2019,4:26-27. | |
[2] | 邱志斌, 阮江军, 黄道春, 等. 高压隔离开关机械故障分析及诊断技术综述[J]. 高压电器, 2015, 51(8):171-179. |
QIU Zhibin, RUAN Jiangjun, HUANG Daochun, et al. Review of mechanical fault analysis and diagnosis technology of high voltage disconnector[J]. High Voltage Apparatus, 2015, 51(8):171-179. | |
[3] |
KIM K, PARLOS A G, BHARADWAJ R M. Sensorless fault diagnosis of induction motors[J]. IEEE Transactions on Industrial Electronics, 2003, 50(5):1038-1051.
doi: 10.1109/TIE.2003.817693 |
[4] | 李少华, 张文涛, 宋亚凯, 等. 基于高压隔离开关振动信号的故障诊断方法分析[J]. 内蒙古电力技术, 2018, 36(1):89-92. |
LI Shaohua, ZHANG Wentao, SONG Yakai, et al. Analysis of fault diagnosis method based on vibration signal of high voltage disconnector[J]. Inner Mongolia Electric Power Technology, 2018, 36(1):89-92. | |
[5] |
ZHAO Lihua, HONG Guo, WANG Zelong, et al. Research on fault vibration signal features of GIS disconnector based on EEMD and kurtosis criterion[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(5):677-686.
doi: 10.1002/tee.v16.5 |
[6] | 王黎明, 何建明. 电动隔离开关机械故障状态监测的设想[J]. 浙江电力, 2006,3:56-59. |
WANG Liming, HE Jianming. Assumption of mechanical fault condition monitoring of electric disconnector[J]. Zhejiang Electric Power, 2006,3:56-59. | |
[7] | FUJITA A, SEVERINO P, KOJIMA K, et al. Functional clustering of time series gene expression data by Granger causality[J]. BMC Systems Biology, 2012,6:1-12. |
[8] | CHAN P K, MAHONEY M V. Modeling multiple time series for anomaly detection[C]// Fifth IEEE International Conference on Data Mining(ICDM’05). IEEE,2005:8. |
[9] | AGHABOZORGI S, SHIRKHORSHIDI A S, WAH T Y. Time-series clustering:A decade review[J]. Information Systems, 2015,53:16-38. |
[10] | 孙志鹏, 孙志龙, 魏建. 基于决策树支持向量机算法的电力变压器故障诊断研究[J]. 电气工程学报, 2019, 14(4):42-45. |
SUN Zhipeng, SUN Zhilong, WEI Jian. Research on fault diagnosis of power transformer based on decision tree support vector machine algorithm[J]. Journal of Electrical Engineering, 2019, 14(4):42-45. | |
[11] | 于聪, 汤凯波, 李哲, 等. 基于BP神经网络与改进DS证据融合的GIS设备局放故障识别[J/OL]. 电气工程学报:1-9[2023-10-21]. http://kns.cnki.net/kcms/detail/10.1289.TM.20230725.1006.006.html. |
YU Cong, TANG Kaibo, LI Zhe, et al. PDS fault identification of GIS equipment based on BP neural network and improved DS evidence fusion[J/OL]. Journal of Electrical Engineering:1-9[2023-10-21]. http://kns.cnki.net/kcms/detail/10.1289.TM.20230725.1006.006.html. | |
[12] | LEI Huang, XIA Yingcun, QIN Xu. Estimation of semivarying coefficient time series models with ARMA errors[J]. The Annals of Statistics, 2016, 44(4):1618-1660. |
[13] |
CAI Zongwu, FAN Jianqing, YAO Qiwei. Functional-coefficient regression models for nonlinear time series[J]. Journal of the American Statistical Association, 2000, 95(451):941-956.
doi: 10.1080/01621459.2000.10474284 |
[14] | YANG Yi, SHEN Hengtao, Ma Zhigang, et al. ℓ2, 1-norm regularized discriminative feature selection for unsupervised learning[C]// IJCAI International Joint Conference on Artificial Intelligence. 2011. |
[15] | LI Zechao, YANG Yi, LIU Jing, et al. Unsupervised feature selection using nonnegative spectral analysis[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2012, 26(1):1026-1032. |
[16] | 钱明杰, 翟承祥. 鲁棒性的无监督特征选择[C]// 人工智能国际联合会议, 2013. |
QIAN Mingjie, ZHAI Chengxiang. Robust unsupervised feature selection[C]// International Joint Conference on Artificial Intelligence, 2013. | |
[17] | SHI Lei, DU Liang, SHEN Yidong. Robust spectral learning for unsupervised feature selection[C]// In 2014 IEEE International Conference on Data Mining,IEEE,2014: 977-982. |
[18] |
DU Xinlong, HAJJAR J F, BOND R B, et al. Clustering and selection of hurricane wind records using autoencoder and K-means algorithm[J]. Journal of Structural Engineering, 2023, 149(8):4023096.
doi: 10.1061/JSENDH.STENG-12110 |
[19] | TJOSTHEIM D, AUESTAD B H. Nonparametric identification of nonlinear time series:Projections[J]. Journal of the American Statistical Association, 1994, 89(428):1398-1409. |
[20] |
MA Qianli, LI Sen, SHEN Lifeng, et al. End-to-end incomplete time-series modeling from linear memory of latent variables[J]. IEEE Transactions on Cybernetics, 2019, 50(12):4908-4920.
doi: 10.1109/TCYB.6221036 |
[1] | LI Xin, YANG Yu, CHENG Jian, CHENG Jun-sheng. Robustness Imbalanced Convex Hull-based Classification for Bevel Gearbox Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(8): 32-41. |
[2] | LI Xiang, FU Chunlin, LEI Yaguo, LI Naipeng, YANG Bin. Federated Transfer Learning Method for Privacy-preserving Collaborative Intelligent Machinery Fault Diagnostics [J]. Journal of Mechanical Engineering, 2023, 59(6): 1-9. |
[3] | LI Xiaoning, GAO Zhaohui, WANG Shuang, TANG Xiao, LI Yizhuo. Research on Health Assessment Method of Key Components in Aircraft Main Power System [J]. Journal of Electrical Engineering, 2023, 18(4): 188-198. |
[4] | SHAO Ningning, WANG Ying. Research on PSO-RBF Traction Transformer Fault Diagnosis Based on Adam Optimization [J]. Journal of Electrical Engineering, 2023, 18(4): 209-216. |
[5] | YU Cong, TANG Kaibo, LI Zhe, LIU Zhipeng, CHEN Bo, LIU Yuanchao, FANG Yaqi. GIS Equipment Fault Identification Based on BP Neural Network and Improved DS Evidence Fusion [J]. Journal of Electrical Engineering, 2023, 18(4): 361-369. |
[6] | LIU Yanli, ZHANG Xiaole, LÜ Zhengyang, XU Zhenhao, LIU Yang. Research on Intelligent Diagnosis and Route Selection Method of Multi-load Circuit Series Fault Arc [J]. Journal of Electrical Engineering, 2023, 18(4): 378-388. |
[7] | DAI Xianyang, CHEN Qian, SONG Xiangjin, LIU Zhengmeng, XU Gaohong. ITSC Fault Diagnosis for Five-phase Permanent Magnet Synchronous Motors Using Bayesian Optimization and Multiscale Convolutional Neural Network [J]. Journal of Electrical Engineering, 2023, 18(4): 114-123. |
[8] | SHAO Haidong, XIAO Yiming, YAN Shen. Simulation Data-driven Enhanced Unsupervised Domain Adaptation for Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(3): 76-85. |
[9] | Siti Nor Azlina M. Ghazali, Muhamad Zahim Sujod, Mohd Shawal Jadin. A Multi-scale Smart Fault Diagnosis Model Based on Waveform Length and Autoregressive Analysis for PV System Maintenance Strategies* [J]. Chinese Journal of Electrical Engineering, 2023, 9(3): 99-110. |
[10] | LIN Jing, JIAO Jinyang. Research Progress and Challenges of Interpretable Mechanical Intelligent Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(20): 215-224. |
[11] | YANG Shaopu, GU Xiaohui, LIU Yongqiang, DENG Feiyue, LIU Zechao, LIU Wenpeng, WANG Baosen. Review of Dynamic Mechanism and Fault Diagnosis for Key Rotating Components of Bogies [J]. Journal of Mechanical Engineering, 2023, 59(20): 225-243. |
[12] | ZHANG Han, TIAN Yi, DU Zhaohui. Time-varying Noise Structure Inspired Adaptive Weighted Sparse Model for Aero-engine Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(17): 162-174. |
[13] | ZHANG Zongzhen, WANG Jinrui, HAN Baokun, BAO Huaiqian, LI Shunming. Early Stage Fault Diagnosis Method of Bearings Based on Nonlinear Sparse Blind Deconvolution [J]. Journal of Mechanical Engineering, 2023, 59(16): 157-166. |
[14] | JIA Sixiang, SUN Dingyi, MAO Gang, LI Yongbo. Adversarial Entropy Based Fault Diagnosis Method for Rotor System Across Different Working Conditions [J]. Journal of Mechanical Engineering, 2023, 59(15): 110-120. |
[15] | BIAN Wenbin, DENG Aidong, LIU Dongchuan, ZHAO Min, LIU Yang, LI Jing. Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on Improved Deep Residual Shrinkage Network [J]. Journal of Mechanical Engineering, 2023, 59(12): 202-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||