Journal of Electrical Engineering ›› 2024, Vol. 19 ›› Issue (1): 117-123.doi: 10.11985/2024.01.012
Previous Articles Next Articles
GONG Yichang(), ZHU Yuhao(
), GU Xin(
), WANG Teng(
), SHANG Yunlong(
)
Received:
2023-12-19
Revised:
2024-01-30
Online:
2024-03-25
Published:
2024-04-25
CLC Number:
GONG Yichang, ZHU Yuhao, GU Xin, WANG Teng, SHANG Yunlong. Definition and Evaluation Method of Surplus Use Value of Power Battery Based on Multi-parameters[J]. Journal of Electrical Engineering, 2024, 19(1): 117-123.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 张茜. 乘用车和商用车场景下电动汽车与燃油车技术路线对比分析[J]. 石油石化绿色低碳, 2022, 7(4):6-9,53. |
ZHANG Xi. Comparative analysis of EV and ICE vehicles in passenger and commercial vehicle scenarios[J]. Green Petroleum & Petrochemicals, 2022, 7(4):6-9. | |
[2] |
来鑫, 陈权威, 顾黄辉, 等. 面向“双碳”战略目标的锂离子电池生命周期评价:框架、方法与进展[J]. 机械工程学报, 2022, 58(22):3-18.
doi: 10.3901/JME.2022.22.003 |
LAI Xin, CHEN Quanwei, GU Huanghui, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality:Framework,methods,and progress[J]. Journal of Mechanical Engineering, 2022, 58(22):3-18.
doi: 10.3901/JME.2022.22.003 |
|
[3] | 肖曦, 田培根, 于璐, 等. 动力电池梯次利用储能系统电热安全研究现状及展望[J]. 电气工程学报, 2022, 17(1):206-224. |
XIAO Xi, TIAN Peigen, YU Lu, et al. Status and prospect of safety studies of cascade power battery energy storage system[J]. Journal of Electrical Engineering, 2022, 17(1):206-224. | |
[4] |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5):383-391.
doi: 10.1038/s41560-019-0356-8 |
[5] |
ZHOU Z, LIU Y, YOU M, et al. Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction[J]. Green Energy and Intelligent Transportation, 2022, 1(1):100008.
doi: 10.1016/j.geits.2022.100008 |
[6] | HARIS M, HASAN M N, QIN S. Degradation curve prediction of lithium-ion batteries based on knee point detection algorithm and convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2022,71:1-10. |
[7] |
WAAG W, FLEISCHER C, SAUER D U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258(14):321-339.
doi: 10.1016/j.jpowsour.2014.02.064 |
[8] |
LIU Zhenbao, SUN Gaoyuan, BU Shuhui, et al. Particle learning framework for estimating the remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2):280-293.
doi: 10.1109/TIM.2016.2622838 |
[9] | ZHANG Lijun, MU Zhongqiang, SUN Changyan. Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access, 2018,6:17729-17740. |
[10] | 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3):666-674. |
SUN Bingxiang, REN Pengbo, CHEN Yuzhe, et al. Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3):666-674. | |
[11] | 方德宇, 楚潇, 刘涛, 等. 基于数据-模型驱动的锂离子电池健康状态估计[J]. 电气工程学报, 2022, 17(4):20-31. |
FANG Deyu, CHU Xiao, LIU Tao, et al. Research on health assessment method of lithium-ion battery based on bata-model hybrid drive[J]. Journal of Electrical Engineering, 2022, 17(4):20-31. | |
[12] | 胡晓亚, 郭永芳, 张若可. 锂离子电池健康状态估计方法研究综述[J]. 电源学报, 2022, 20(1):126-133. |
HU Xiaoya, GUO Yongfang, ZHANG Ruoke. Review of state-of-health estimation methods for lithium-ion battery[J]. Journal of Power Supply, 2022, 20(1):126-133.
doi: 10.13234/j.issn.2095-2805.2022.1.126 |
|
[13] |
LIU Kailong, SHANG Yunlong, OUYANG Quan, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4):3170-3180.
doi: 10.1109/TIE.41 |
[14] |
贾俊, 胡晓松, 邓忠伟. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报, 2021, 57(14):141-149,159.
doi: 10.3901/JME.2021.14.141 |
JIA Jun, HU Xiaosong, DENG Zhongwei. Data-driven comprehensive evaluation of lithium-ion battery state of health and abnormal battery screening[J]. Journal of Mechanical Engineering, 2021, 57(14):141-149,159.
doi: 10.3901/JME.2021.14.141 |
|
[15] | 李欣. 车用锂离子电池全生命周期寿命预测与健康管理方法研究[D]. 长春: 吉林大学, 2022. |
LI Xin. Research on life prognostics and health management of electric vehicles lithium-ion battery in the whole life cycle[D]. Changchun: Jilin University, 2022. | |
[16] | ZHENG Y, QIN C, LAI X, et al. A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model[J]. Applied Energy, 2019,251:113327. |
[17] |
YAN W, ZHANG B, ZHAO G, et al. A battery management system with a Lebesgue-sampling-based extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4):3227-3236.
doi: 10.1109/TIE.2018.2842782 |
[18] |
MA Y, CHEN Y, ZHOU X, et al. Remaining useful life prediction of lithium-ion battery based on Gauss-Hermite particle filter[J]. IEEE Transactions on Control Systems Technology, 2018, 27(4):1788-1795.
doi: 10.1109/TCST.87 |
[19] | YU Q, XIONG R, YANG R, et al. Online capacity estimation for lithium-ion batteries through joint estimation method[J]. Applied Energy, 2019,255:113817. |
[20] |
CHEN C, XIONG R, SHEN W. A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation[J]. IEEE Transactions on Power Electronics, 2017, 33(1):332-342.
doi: 10.1109/TPEL.2017.2670081 |
[21] | KIM J, CHUN H, KIM M, et al. Data-driven state of health estimation of Li-ion batteries with RPT-reduced experimental data[J]. IEEE Access, 2019,7:106987-106997. |
[22] | HAN T, WANG Z, MENG H. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation[J]. Journal of Power Sources, 2022,520:230823. |
[23] |
HU X, CHE Y, LIN X, et al. Health prognosis for electric vehicle battery packs:A data-driven approach[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6):2622-2632.
doi: 10.1109/TMECH.3516 |
[24] | WANG Z P, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression[J]. IEEE Access, 2017,5:21286-21295. |
[25] | KATTERNBORN T, LEITLOFF J, SCHIEFER F, et al. Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,173:24-49. |
[26] | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019,113:109254. |
[1] | WANG Zhenpo, WANG Qiushi, LIU Peng, ZHANG Zhaosheng. Review on Techniques for Power Battery State of Health Estimation Driven by Big Data Methods [J]. Journal of Mechanical Engineering, 2023, 59(2): 151-168. |
[2] | LI Da, ZHANG Puchen, LIN Ni, ZHANG Zhaosheng, WANG Zhenpo, DENG Junjun. Safety Estimation Method of Electric System in Electric Vehicles Based on Multiple Model Coupling [J]. Journal of Mechanical Engineering, 2023, 59(12): 354-363. |
[3] | GUO Hongfei, CHEN Zhibin, REN Yaping, QU Ting, LI Jianqing. Research on Disassembly Sequence and Disassembly Length Integrated Decision of End-of-life Products Based on Parts Recovery Comprehensive Evaluation [J]. Journal of Mechanical Engineering, 2022, 58(4): 258-268. |
[4] | LI Weicong, MU Hao, SHEN Henglong, YU Quanqing. Application Prospect Analysis of Solid-state Lithium Battery in Vehicle [J]. Journal of Electrical Engineering, 2022, 17(4): 88-102. |
[5] | ZHANG Kai, FENG Guang, XU Mingming, GE Guowei. Analysis on Key Factors of Primary and Secondary Integration of Distribution Switch Based on AHP-fuzzy Comprehensive Evaluation [J]. Journal of Electrical Engineering, 2022, 17(2): 187-193. |
[6] | SHAN Tongxin, WANG Zhenpo, HONG Jichao, QU Changhui, ZHANG Jinghan, ZHOU Yangjie, HOU Yankai. Overview of “Mechanical Abuse-thermal Runaway” of Electric Vehicle Power Battery and Its Safety Prevention and Control Technology [J]. Journal of Mechanical Engineering, 2022, 58(14): 252-275. |
[7] | XIAO Xi, TIAN Peigen, YU Lu, WU Yan, CI Song, ZHU Maoyu. Status and Prospect of Safety Studies of Cascade Power Battery Energy Storage System [J]. Journal of Electrical Engineering, 2022, 17(1): 206-224. |
[8] | CHEN Zeyu, ZHANG Bo, XIONG Rui, LI Shijie. Modeling Analysis of Heating Consistency and Influencing Factors of Low-temperature Extreme-speed Self-heating System of Battery [J]. Journal of Mechanical Engineering, 2021, 57(22): 226-236. |
[9] | SUN Zhenyu, WANG Zhenpo, LIU Peng, ZHANG Zhaosheng, CHEN Yong, QU Changhui. Overview of Fault Diagnosis in New Energy Vehicle Power Battery System [J]. Journal of Mechanical Engineering, 2021, 57(14): 87-104. |
[10] | CHEN Zeyu, XIONG Rui, SUN Fengchun. Research Status and Analysis for Battery Safety Accidents in Electric Vehicles [J]. Journal of Mechanical Engineering, 2019, 55(24): 93-104,116. |
[11] | SHE Chengqi, ZHANG Zhaosheng, LIU Peng, SUN Fengchun. Overview of the Application of Big Data Analysis Technology in New Energy Vehicle Industry: Based on Operating Big Data of New Energy Vehicle [J]. Journal of Mechanical Engineering, 2019, 55(20): 3-16. |
[12] | MA Yan, CHEN Yang, ZHANG Fan, CHEN Hong. Remaining Useful Life Prediction of Power Battery Based on Extend H∞ Particle Filter Algorithm [J]. Journal of Mechanical Engineering, 2019, 55(20): 36-43. |
[13] | LI Zhijie, CHEN Jiqing, LAN Fengchong, ZHENG Wenjie. Analysis and Evaluation on System Safety of Power Battery Pack under Mechanical Loading [J]. Journal of Mechanical Engineering, 2019, 55(12): 137-148. |
[14] | TANG Bangbei, GUO Gang, XIA Jinjun. Method for Industry Design Material Test and Evaluation Based on User Visual and Tactile Experience [J]. Journal of Mechanical Engineering, 2017, 53(3): 162-172. |
[15] | WANG Wei, LI Qingzhao, KANG Wenjun, TAO Wenjian, DU Li. Method of Machining Error Tracing and Processing Performance Evaluation for Five-axis CNC Machine Tool Based on the Comprehensive Evaluation System [J]. Journal of Mechanical Engineering, 2017, 53(21): 149-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||