Journal of Electrical Engineering ›› 2023, Vol. 18 ›› Issue (4): 209-216.doi: 10.11985/2023.04.023
Previous Articles Next Articles
SHAO Ningning1(), WANG Ying1,2(
)
Received:
2022-10-26
Revised:
2023-07-11
Online:
2023-12-25
Published:
2024-01-12
CLC Number:
SHAO Ningning, WANG Ying. Research on PSO-RBF Traction Transformer Fault Diagnosis Based on Adam Optimization[J]. Journal of Electrical Engineering, 2023, 18(4): 209-216.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 李波. 智能牵引变压器故障诊断技术研究[J]. 铁道工程学报, 2020, 37(8):71-76. |
LI Bo. Research on fault diagnosis technology of intelligent traction transformer[J]. Journal of Railway Engineering Society, 2020, 37(8):71-76. | |
[2] | 范贤浩, 刘捷丰, 张镱议, 等. 融合频域介电谱及支持向量机的变压器油浸纸绝缘老化状态评估[J]. 电工技术学报, 2021, 36(10):2161-2168. |
FAN Xianhao, LIU Jiefeng, ZHANG Yiyi, et al. Evaluation of aging state of oil-immersed paper insulation of transformer by integrating frequency domain dielectric spectrum and support vector machine[J]. Transactions of China Electrotechnical Society, 2021, 36(10):2161-2168. | |
[3] | 梁永亮, 郭汉琮, 薛永端. 基于特征气体关联特征的变压器故障诊断方法[J]. 高电压技术, 2019, 45(2):386-392. |
LIANG Yongliang, GUO Hancong, XUE Yongduan. Transformer fault diagnosis method based on characteristic gas correlation characteristics[J]. High Voltage Engineering, 2019, 45(2):386-392. | |
[4] | 郭林, 唐晶, 唐黎哲, 等. 一种基于改进BP神经网络的变压器故障诊断方法[J]. 控制与信息技术, 2021(5):71-77. |
GUO Lin, TANG Jing, TANG Lizhe, et al. A transformer fault diagnosis method based on improved BP neural network[J]. Control and Information Technology, 2021(5):71-77. | |
[5] | 王保义, 杨韵洁, 张少敏. 改进BP神经网络的SVM变压器故障诊断[J]. 电测与仪表, 2019, 56(19):53-58. |
WANG Baoyi, YANG Yunjie, ZHANG Shaomin. SVM transformer fault diagnosis based on improved BP neural network[J]. Electrical Measurement and Instrument, 2019, 56(19):53-58. | |
[6] | 夏飞, 罗志疆, 张浩, 等. 混合神经网络在变压器故障诊断中的应用[J]. 电子测量与仪器学报, 2017, 31(1):118-124. |
XIA Fei, LUO Zhijiang, ZHANG Hao, et al. Application of hybrid neural network in transformer fault diagnosis[J]. Journal of Electronic Measurement and Instrument, 2017, 31(1):118-124. | |
[7] | 张奎, 王建南, 王肖峰. 基于神经网络的变压器故障诊断[J]. 电子测量技术, 2017, 40(12):98-101. |
ZHANG Kui, WANG Jiannan, WANG Xiaofeng. Transformer fault diagnosis based on neural network[J]. Electronic Measurement Technology, 2017, 40(12):98-101. | |
[8] | KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceeding of IEEE International Conference on Neural Networks. Piscataway:IEEE, 1885,1492-1498. |
[9] | 孟荣, 赵冀宁, 周通. 基于改进惯性权重粒子群算法的抢修小组快速调配策略[J]. 电网与清洁能源, 2021, 37(7):17-24. |
MENG Rong, ZHAO Jining, ZHOU Tong. Rapid deployment strategy based on improved inertial weight particle swarm algorithm[J]. Power System and Clean Energy, 2021, 37(7):17-24. | |
[10] | 朱明星, 张德龙. RBF网络基函数中心选取算法的研究[J]. 安徽大学学报, 2000(1):72-78. |
ZHU Mingxing, ZHANG Delong. Study of RBF network[J]. Journal of Anhui University, 2000(1):72-78. | |
[11] | 郭小艳. 改进粒子群优化RBF网络在变压器故障诊断中的应用[D]. 西安: 西安建筑科技大学, 2019. |
GUO Xiaoyan. Application of improved particle swarm optimization RBF network in transformer fault diagnosis[D]. Xi’an: Xi’an University of Architecture and Technology, 2019. | |
[12] | KINDMA D, BA J. A method for stochastic optimization[C]// Proceeding of the 3rd International Conference on Learning Representations, April 14-16,2014, San Diego. USA: Workshop Track, 2015:1-13. |
[13] | 施恂山, 马宏忠, 张琳, 等. PSO改进RBPNN在变压器故障诊断中的应用[J]. 电力系统保护与控制, 2016, 44(17):39-44. |
SHI Xunshan, MA Hongzhong, ZHANG Lin, et al. PSO improved application of RBPNN in transformer fault diagnosis[J]. Power System Protection and Control, 2016, 44(17):39-44. | |
[14] | JIANG Yan, HAN Fei. A hybrid algorithm of adaptive particle swarm optimization based on adaptive moment estimation method[C]// International Conference on Intelligent Computing, March 10-12,2017, Bangkok. Huang DS: Bevilacqua V, 2017:7-20. |
[15] |
TRAPPEY A J C, TRAPPEY C V, MA L, et al. Intelligent engineering asset management system for power transformer maintenance decision supports under various operating conditions[J]. Computers & Industrial Engineering, 2015, 84:3-11.
doi: 10.1016/j.cie.2014.12.033 |
[16] | 李笑竹, 陈志军, 樊小朝, 等. 基于ACS-SA文化基因算法的BP神经网络变压器故障诊断[J]. 高压电器, 2018, 54(2):134-146. |
LI Xiaozhu, CHEN Zhijun, FAN Xiaochao, et al. Fault diagnosis of BP neural network transformer based on ACS-SA culture gene algorithm[J]. High Voltage Apparatus, 2018, 54(2):134-146. | |
[17] | 肖云波, 范菁, 张宜, 等. 基于改进粒子群算法与油中溶解气体的变压器故障诊断的研究[J]. 电子测量技术, 2021, 44(18):122-128. |
XIAO Yunbo, FAN Jing, ZHANG Yi, et al. Based on improved particle swarm algorithm and transformer fault diagnosis of dissolved gas in oil[J]. Electronic Measurement Technology, 2021, 44(18):122-128. | |
[18] | 倪雪松. 基于动态阈值的牵引变压器故障诊断技术研究[D]. 成都: 西南交通大学, 2016. |
NI Xuesong. Research on traction transformer failure diagnosis technology based on dynamic thresholding[D]. Chengdu: Southwest Jiaotong University, 2016. | |
[19] | 谢国民, 倪乐水, 曹媛. 基于VSRP与β-GWO-SVM的变压器故障辨识方法[J]. 高电压技术, 2021, 47(10):3635-3641. |
XIE Guomin, NI Leshui, CAO Yuan. Transformer fault identification method based on VSRP and β-GWO-SVM[J]. High Voltage Engineering, 2021, 47(10):3635-3641. | |
[20] | 刘仲民, 翟玉晓, 张鑫, 等. 基于DBN-IFCM的变压器故障诊断方法[J]. 高电压技术, 2020, 46(12):4258-4265. |
LIU Zhongmin, ZHAI Yuxiao, ZHANG Xin, et al. Transformer fault diagnosis method based on DBN-IFCM[J]. High Voltage Engineering, 2020, 46(12):4258-4265. | |
[21] | 王雨虹, 王志中, 付华, 等. 多策略改进麻雀算法与BiLSTM的变压器故障诊断研究[J]. 仪器仪表学报, 2022, 43(3):39-46. |
WANG Yuhong, WANG Zhizhong, FU Hua, et al. Study of improving sparrow algorithm and BiLSTM[J]. Chinese Journal of Scientific Instrument, 2022, 43(3):39-46. | |
[22] | 谢乐, 衡熙丹, 刘洋, 等. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报, 2020, 54(11):2266-2272. |
XIE Le, HENG Xidan, LIU Yang, et al. Transformer fault diagnosis based on linear discriminant analysis and step-wise machine learning[J]. Journal of Zhejiang University, 2020, 54(11):2266-2272. |
[1] | LI Xin, YANG Yu, CHENG Jian, CHENG Jun-sheng. Robustness Imbalanced Convex Hull-based Classification for Bevel Gearbox Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(8): 32-41. |
[2] | LI Xiang, FU Chunlin, LEI Yaguo, LI Naipeng, YANG Bin. Federated Transfer Learning Method for Privacy-preserving Collaborative Intelligent Machinery Fault Diagnostics [J]. Journal of Mechanical Engineering, 2023, 59(6): 1-9. |
[3] | DAI Xianyang, CHEN Qian, SONG Xiangjin, LIU Zhengmeng, XU Gaohong. ITSC Fault Diagnosis for Five-phase Permanent Magnet Synchronous Motors Using Bayesian Optimization and Multiscale Convolutional Neural Network [J]. Journal of Electrical Engineering, 2023, 18(4): 114-123. |
[4] | LIU Yanli, ZHANG Xiaole, LÜ Zhengyang, XU Zhenhao, LIU Yang. Research on Intelligent Diagnosis and Route Selection Method of Multi-load Circuit Series Fault Arc [J]. Journal of Electrical Engineering, 2023, 18(4): 378-388. |
[5] | YU Cong, TANG Kaibo, LI Zhe, LIU Zhipeng, CHEN Bo, LIU Yuanchao, FANG Yaqi. GIS Equipment Fault Identification Based on BP Neural Network and Improved DS Evidence Fusion [J]. Journal of Electrical Engineering, 2023, 18(4): 361-369. |
[6] | Siti Nor Azlina M. Ghazali, Muhamad Zahim Sujod, Mohd Shawal Jadin. A Multi-scale Smart Fault Diagnosis Model Based on Waveform Length and Autoregressive Analysis for PV System Maintenance Strategies* [J]. Chinese Journal of Electrical Engineering, 2023, 9(3): 99-110. |
[7] | SHAO Haidong, XIAO Yiming, YAN Shen. Simulation Data-driven Enhanced Unsupervised Domain Adaptation for Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(3): 76-85. |
[8] | LIN Jing, JIAO Jinyang. Research Progress and Challenges of Interpretable Mechanical Intelligent Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(20): 215-224. |
[9] | YANG Shaopu, GU Xiaohui, LIU Yongqiang, DENG Feiyue, LIU Zechao, LIU Wenpeng, WANG Baosen. Review of Dynamic Mechanism and Fault Diagnosis for Key Rotating Components of Bogies [J]. Journal of Mechanical Engineering, 2023, 59(20): 225-243. |
[10] | ZHANG Han, TIAN Yi, DU Zhaohui. Time-varying Noise Structure Inspired Adaptive Weighted Sparse Model for Aero-engine Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(17): 162-174. |
[11] | ZHANG Zongzhen, WANG Jinrui, HAN Baokun, BAO Huaiqian, LI Shunming. Early Stage Fault Diagnosis Method of Bearings Based on Nonlinear Sparse Blind Deconvolution [J]. Journal of Mechanical Engineering, 2023, 59(16): 157-166. |
[12] | JIA Sixiang, SUN Dingyi, MAO Gang, LI Yongbo. Adversarial Entropy Based Fault Diagnosis Method for Rotor System Across Different Working Conditions [J]. Journal of Mechanical Engineering, 2023, 59(15): 110-120. |
[13] | BIAN Wenbin, DENG Aidong, LIU Dongchuan, ZHAO Min, LIU Yang, LI Jing. Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on Improved Deep Residual Shrinkage Network [J]. Journal of Mechanical Engineering, 2023, 59(12): 202-214. |
[14] | HAO Haidong, LI Wei, LIU Yi, YANG Bin. Fault Diagnosis of Rotor-bearing System under Time-varying Speeds by Using Dual-threshold Attention-embedded GAN and Small Samples [J]. Journal of Mechanical Engineering, 2023, 59(12): 215-224. |
[15] | LI Da, ZHANG Puchen, LIN Ni, ZHANG Zhaosheng, WANG Zhenpo, DENG Junjun. Safety Estimation Method of Electric System in Electric Vehicles Based on Multiple Model Coupling [J]. Journal of Mechanical Engineering, 2023, 59(12): 354-363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||