Journal of Electrical Engineering ›› 2023, Vol. 18 ›› Issue (3): 2-17.doi: 10.11985/2023.03.002
Previous Articles Next Articles
WANG Xiangfei(), GAO Guoqiang(
), YANG Zefeng, HE Shuhang, MA Yaguang, DONG Keliang, WEI Wenfu, WU Guangning
Received:
2023-07-24
Revised:
2023-08-30
Online:
2023-09-25
Published:
2023-10-23
CLC Number:
WANG Xiangfei, GAO Guoqiang, YANG Zefeng, HE Shuhang, MA Yaguang, DONG Keliang, WEI Wenfu, WU Guangning. Research Progress in Sliding Electrical Contact Materials for Rail Transit[J]. Journal of Electrical Engineering, 2023, 18(3): 2-17.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
YANG Xingzu, LI Shuaibing, CUI Yi, et al. Measurement and interpretation of the effect of electrical sliding speed on contact characteristics of on-load tap changers[J]. Coatings, 2022, 12(10):1436.
doi: 10.3390/coatings12101436 |
[2] | 丁雨田, 李来军, 许广济, 等. 接触线材料的现状及研究热点[J]. 电线电缆, 2004(2):3-9. |
DING Yutian, LI Laijun, XU Guangji, et al. The status-quo of contact wire and popular topics of its research[J]. Electric Wire & Cable, 2004(2):3-9. | |
[3] | 刘平. 高性能铜基合金的研究进展[J]. 功能材料, 2014, 45(7):7016-7021,7026. |
LIU Ping. Progress in research of copper-based alloys with high-performance[J]. Journal of Functional Materials, 2014, 45(7):7016-7021,7026. | |
[4] | 刘平, 刘喜波, 贾淑果, 等. 微量铈和铬对Cu-0.1Ag合金接触线的性能影响[J]. 稀有金属, 2006(1):39-42. |
LIU Ping, LIU Xibo, JIA Shuguo, et al. Effects of adding traces of Ce and Cr on properties of Cu-0.1Ag alloy for contact wires[J]. Chinese Journal of Rare Metals, 2006(1):39-42. | |
[5] | 吴广宁, 周悦, 雷栋, 等. 弓网电接触研究进展[J]. 高电压技术, 2016, 42(11):3495-3506. |
WU Guangning, ZHOU Yue, LEI Dong, et al. Research advances in electric contact between pantograph and catenary[J]. High Voltage Engineering, 2016, 42(11):3495-3506. | |
[6] | 高国强, 王青松, 何志江, 等. 界面氧化对碳-铜接触副电接触性能的影响[J/OL]. 中国电机工程学报:1-10[2023-07-23]. DOI:10.13334/j.0258-8013.pcsee.221877. |
GAO Guoqiang, WANG Qingsong, HE Zhijiang, et al. Influence of interface oxidation on the electrical contact properties of C-Cu contact pairs[J/OL]. Proceedings of the CSEE:1-10[2023-07-23]. DOI:10.13334/j.0258-8013.pcsee.221877. | |
[7] | 谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进展[J]. 摩擦学学报, 2019, 39(5):656-668. |
XIE Bohua, JU Pengfei, JI Li, et al. Research progress on tribology of electrical contact materials[J]. Tribology, 2019, 39(5):656-668. | |
[8] |
LI Shuaibing, YANG Xingzu, KANG Yongqiang, et al. Progress on current-carry friction and wear:An overview from measurements to mechanism[J]. Coatings, 2022, 12(9):1345.
doi: 10.3390/coatings12091345 |
[9] | 高国强, 向宇, 马亚光, 等. 液态金属在电气领域的应用与展望[J]. 高电压技术, 2022, 48(11):4243-4254. |
GAO Guoqiang, XIANG Yu, MA Yaguang, et al. Applications and prospects of liquid metals in the electrical field[J]. High Voltage Engineering, 2022, 48(11):4243-4254. | |
[10] | 黄崇祺. 轮轨高速电气化铁路接触网用接触线的研究[J]. 中国铁道科学, 2001(1):6-10. |
HUANG Chongqi. On contact wire line used in catenary of high speed wheel-rail electrified railway[J]. China Railway Science, 2001(1):6-10. | |
[11] | 文姗, 常丽丽, 尚兴军, 等. 铜银合金导线的显微组织与性能[J]. 中国有色金属学报, 2015, 25(6):1655-1661. |
WEN Shan, CHANG Lili, SHANG Xingjun, et al. Microstructure and properties of Cu-Ag alloy wire[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6):1655-1661. | |
[12] |
PIYAWIT W, XU W, MATHAUDHU S, et al. Nucleation and growth mechanism of Ag precipitates in a CuAgZr alloy[J]. Materials Science and Engineering A, 2014, 610:85-90.
doi: 10.1016/j.msea.2014.05.023 |
[13] | 李贵茂, 柳艳, 李延增, 等. Ag含量对Cu-Ag合金组织及性能影响研究[J]. 铸造技术, 2018, 39(3):530-532. |
LI Guimao, LIU Yan, LI Yanzeng, et al. Influence of Ag content on microstructure and properties of Cu-Ag alloys[J]. Foundry Technology, 2018, 39(3):530-532. | |
[14] | 王英民, 毛大立. 形变纤维增强高强度高电导率的Cu-Ag合金[J]. 稀有金属材料与工程, 2001(4):295-298. |
WANG Yingmin, MAO Dali. Deformed fiber streng- thened high-strength and high-conductivity alloy[J]. Rare Metal Materials and Engineering, 2001(4):295-298. | |
[15] | 王永鹏, 宋克兴, 国秀花, 等. 高速电气化铁路接触导线的应用现状及研究进展[J]. 热加工工艺, 2009, 38(14):32-35,40. |
WANG Yongpeng, SONG Kexing, GUO Xiuhua, et al. Application actuality and research progress of contact wire for high-speed electric railway[J]. Hot Working Technology, 2009, 38(14):32-35,40. | |
[16] | 赵大军, 唐丽, 管桂生. 我国电气化铁道用接触线的现状和发展趋势[J]. 铁道机车车辆, 2008(5):74-77. |
ZHAO Dajun, TANG Li, GUAN Guisheng. Current situation and development tendency of Chinese contact wires for electric railway[J]. Railway Locomotive & Car, 2008(5):74-77. | |
[17] | 张光伟, 官珊丹, 张建波, 等. 铜镁、铜锡合金接触线的制备及组织性能研究[J]. 上海有色金属, 2015, 36(2):71-74. |
ZHANG Guangwei, GUAN Shandan, ZHANG Jianbo, et al. Preparation and organization performance of copper-magnesium and copper-tin alloy contact wire[J]. Nonferrous Metal Materials and Engineering, 2015, 36(2):71-74. | |
[18] | 杨运川. SCR连铸连轧法制备Cu-Sn接触线工艺及Sn对组织和性能的影响[J]. 材料导报, 2012, 26(2):86-89. |
YANG Yunchuan. Cu-Sn contact wire prepared by SCR continuous casting-rolling and the affection of Sn to the microstructure and properties[J]. Materials Reports, 2012, 26(2):86-89. | |
[19] | 支海军, 徐玉松, 陆敏松, 等. 高速电气化铁道用铜锡合金接触线成形工艺的确定[J]. 机械工程材料, 2011, 35(10):76-79,94. |
ZHI Haijun, XU Yusong, LU Minsong, et al. Determination of forming technology of CuSn alloy contact wire used for high-speed electric railway[J]. Materials for Mechanical Engineering, 2011, 35(10):76-79,94. | |
[20] | 张强, 王作祥. 铜镁合金接触线的引进与技术自主再创新[J]. 电气化铁道, 2009(1):23-27. |
ZHANG Qiang, WANG Zuoxiang. Copper magnesium alloy contact wires importation and technology independent innovation[J]. Electric Railway, 2009(1):23-27. | |
[21] | 刘轶伦. 高速铁路新型铜镁接触线关键技术[J]. 铁道机车车辆, 2014, 34(2):112-115. |
LIU Yilun. The ultra-fine grain strengthened Cu-Mg contact wire of high speed[J]. Railway Locomotive & Car, 2014, 34(2):112-115. | |
[22] |
HAN K, WALSH R, ISHMAKU A, et al. High strength and high electrical conductivity bulk Cu[J]. Philosophical Magazine, 2004, 84(34):3705-3716.
doi: 10.1080/14786430412331293496 |
[23] | 赵媛霞, 刘平, 刘新宽, 等. 高速电气化铁路接触线的研究与应用[J]. 材料导报, 2012, 26(3):46-50. |
ZHAO Yuanxia, LIU Ping, LIU Xinkuan, et al. Research progress and application of contact wire for high-speed electric railway[J]. Materials Reports, 2012, 26(3):46-50. | |
[24] | 孙亚琴, 潘嘉祺, 陈建斌, 等. 工艺参数对上引连铸铜镁合金杆微观组织的影响[J]. 有色金属工程, 2017, 7(5):16-19. |
SUN Yaqin, PAN Jiaqi, CHEN Jianbin, et al. Influence of process parameters on microstructure of upward continuous casting Cu-Mg alloy rod[J]. Nonferrous Metals Engineering, 2017, 7(5):16-19. | |
[25] | 蔡飞飞, 刘新宽, 刘平, 等. 铜镁合金CuMg0.3棒料连续挤压微观组织演变数值模拟分析[J]. 锻压技术, 2015, 40(3):141-146. |
CAI Feifei, LIU Xinkuan, LIU Ping, et al. Numerical simulation analysis of microstructure evolution in the continyous extrusion for CuMg0.3 Cu-Mg alloy[J]. Forging & Stamping Technology, 2015, 40(3):141-146. | |
[26] | 袁远, 陈立明, 张海波, 等. Cu-Mg合金接触线产品分层缺陷分析[J]. 矿冶工程, 2019, 39(2):108-110,114. |
YUAN Yuan, CHEN Liming, ZHANG Haibo, et al. Analysis of delamination defects of Cu-Mg alloy contact wire[J]. Mining and Metallurgical Engineering, 2019, 39(2):108-110,114. | |
[27] | 何宇, 李学斌, 袁远. Cu-Mg合金连续挤压成形过程的数值模拟和试验对比分析[J]. 材料导报, 2017, 31(S1):139-144. |
HE Yu, LI Xuebin, YUAN Yuan. Numerical simulation and experimental comparison analysis of Cu-Mg alloy continuous extrusion forming process[J]. Materials Reports, 2017, 31(S1):139-144. | |
[28] | 黄张裕, 赵媛霞. 高速铁路用铜镁合金接触线材料热变形方程及其模拟应用[J]. 上海有色金属, 2012, 33(4):162-168. |
HUANG Zhangyu, ZHAO Yuanxia. Hot deformation equation of copper magnesium contact wire for high-speed railway and the application in simulation[J]. Nonferrous Metal Materials and Engineering, 2012, 33(4):162-168. | |
[29] | 何宇. Cu-Mg合金接触线连续挤压接触应力分布函数的建立[J]. 材料导报, 2017, 31(S2):489-494. |
HE Yu. Establishment of contact stresses distribution function for Cu-Mg alloy contact wire continuous extrusion[J]. Materials Reports, 2017, 31(S2):489-494. | |
[30] | 王远东. 电气化铁路用铜合金接触线耐蚀性能研究[J]. 有色金属加工, 2022, 51(2):35-38. |
WANG Yuandong. Study on corrosion resistance of copper alloy contact wire used in electrified railway[J]. Nonferrous Metals Processing, 2022, 51(2):35-38. | |
[31] | 张小平. 高强高导Cu-Cr-In合金的组织与性能研究[D]. 赣州: 江西理工大学, 2015. |
ZHANG Xiaoping. Organisation and properties of high strength and high conductivity Cu-Cr-In alloys[D]. Ganzhou: Jiangxi University of Science and Technology, 2015. | |
[32] |
TAKEUCHI T, TOGANO K, INOUE K, et al. Fibrous chromium and molybdenum fabricated by cold working Cu-Cr and Cu-Mo binary alloys[J]. Journal of the Less Common Metals, 1990, 157(1):25-35.
doi: 10.1016/0022-5088(90)90403-7 |
[33] | 傅声华, 陆峰, 李询. IC引线框架用Cu-Cr-Zr系材料的研究现状与发展[J]. 稀有金属快报, 2008(4):1-6. |
FU Shenghua, LU Feng, LI Xun. Research status and trends of IC lead frame Cu-Cr-Zr system alloys[J]. Rare Metals Letters, 2008(4):1-6. | |
[34] | 訾进蕾, 张雅妮, 郑茂盛, 等. 微量元素Cr、Zr对铜合金性能的影响[J]. 材料开发与应用, 2007(4):1-3,10. |
ZI Jinlei, ZHANG Yani, ZHENG Maosheng, et al. Effect of microelement Cr and Zr on performance of copper alloy[J]. Development and Application of Materials, 2007(4):1-3,10. | |
[35] | 王清平. Cr含量对铜铬锆合金性能及组织的影响[D]. 西安: 西安建筑科技大学, 2013. |
WANG Qingping. Studies on the effect of Cr content on microstructure and properties of Cu-Cr-Zr alloy[D]. Xi’an: Xi’an University of Architecture and Technology, 2013. | |
[36] | 陈昱, 杨晓红, 李雪健, 等. Zr添加方式及加入量对CuCrZr合金组织与性能的影响[J]. 热加工工艺, 2017, 46(15):90-93,97. |
CHEN Yu, YANG Xiaohong, LI Xuejian, et al. Effects of addition model and content of Zr on microstructure and properties of CuCrZr alloy[J]. Hot Working Technology, 2017, 46(15):90-93,97. | |
[37] | 李明茂, 杨斌, 王智祥. 高强高导CuCrZr合金熔炼技术研究[J]. 特种铸造及有色合金, 2005(4):252-253,192. |
LI Mingmao, YANG Bin, WANG Zhixiang. Smelting of high strength and high conductivity CuCrZr alloy[J]. Special Casting & Nonferrous Alloys, 2005(4):252-253,192. | |
[38] | 陶业卿, 刘平, 陈小红, 等. 非真空熔炼Cu-Cr-Zr合金的性能研究[J]. 铸造, 2010, 59(10):1020-1023. |
TAO Yeqing, LIU Ping, CHEN Xiaohong, et al. Research on non-vacuum melting of Cu-Cr-Zr alloy[J]. Foundry, 2010, 59(10):1020-1023. | |
[39] |
马玉霞, 党淑娥, 陈慧琴. 固溶处理对Cu-Cr-Zr合金组织与性能的影响[J]. 金属热处理, 2022, 47(1):163-166.
doi: 10.13251/j.issn.0254-6051.2022.01.027 |
MA Yuxia, DANG Shue, CHEN Huiqin. Effect of solution treatment on microstructure and properties of Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2022, 47(1):163-166.
doi: 10.13251/j.issn.0254-6051.2022.01.027 |
|
[40] |
FU Huadong, XU Sheng, LI Wei, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Materials Science and Engineering A, 2017, 700:107-115.
doi: 10.1016/j.msea.2017.05.114 |
[41] |
VINOGRADOV A, PATLAN V, SUZUKI Y, et al. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing[J]. Acta Materialia, 2002, 50(7):1639-1651.
doi: 10.1016/S1359-6454(01)00437-2 |
[42] | 许方山. 等径角挤压接触线用Cu-Cr-Zr合金的研究[D]. 南京: 南京理工大学, 2012. |
XU Fangshan. Study on ECAPed Cu-Cr-Zr alloys applied to the contact line[D]. Nanjing: Nanjing University of Science and Technology, 2012. | |
[43] | 张剑. 铜铬锆合金接触线在城轨接触网的应用分析[J]. 电气化铁道, 2016(增刊):85-87. |
ZHANG Jian. Analysis of the application of copper-chromium-zirconium alloy contact wires in urban railway contact networks[J]. Electric Railway, 2016(Suppl.):85-87. | |
[44] |
WANG Kun, LIU Kefu, ZHANG Jingbo. Microstructure and properties of aging Cu-Cr-Zr alloy[J]. Rare Metals, 2014, 33(2):134-138.
doi: 10.1007/s12598-014-0244-0 |
[45] | 陈世康, 陈小红, 刘平, 等. 高速铁路接触线用高强高导Cu-Cr-Co/Ti合金的组织性能研究[J]. 有色金属材料与工程, 2020, 41(5):1-8. |
CHEN Shikang, CHEN Xiaohong, LIU Ping, et al. Study on microstructure and properties of high strength and high conductivity Cu-Cr-Co/Ti alloy for high-speed railway contact wire[J]. Nonferrous Metal Materials and Engineering, 2020, 41(5):1-8. | |
[46] | 乐顺聪, 郭诚君, 罗欣, 等. 高强高导Cu-Cr-Ti合金加工工艺设计与优化[J]. 铜业工程, 2019(3):7-11. |
LE Shuncong, GUO Chengjun, LUO Xin, et al. Process design and optimization of high strength and high conductivity Cu-Cr-Ti alloy[J]. Copper Engineering, 2019(3):7-11. | |
[47] | 刘来宁. 电力牵引用接触线的沿革及部分特性探讨[J]. 电线电缆, 1997(1):2-9. |
LIU Laining. History and some characteristics of contact wires for electric traction applications[J]. Wire & Cable, 1997(1):2-9. | |
[48] | 张书久, 王会清. 铝包钢丝的生产及使用前景[J]. 金属制品, 1999(1):7-10. |
ZHANG Shujiu, WANG Huiqing. Production and using prospects of alcladding steel wire[J]. Metal Products, 1999(1):7-10. | |
[49] | 运新兵, 宋宝韫, 刘元文, 等. 电气化铁路用铜包钢接触线制造技术[J]. 有色金属, 2002(3):22-23,35. |
YUN Xinbing, SONG Baoyun, LIU Yuanwen, et al. Production technology of copper-clad steel contact wire used in electrified railway[J]. Nonferrous Metals Engineering, 2002(3):22-23,35. | |
[50] | 廖乐杰, 何福忠. 稀土在铜及铜合金中的作用及其应用效果[J]. 特种铸造及有色合金, 1997(2):54-55. |
LIAO Lejie, HE Fuzhong. Effect of RE-alloy and its applied result in copper and copper alloy[J]. Special Casting & Nonferrous Alloys, 1997(2):54-55. | |
[51] | 张成功, 乔振兴, 史志铭, 等. 稀土Y对高强高导Cu-Cr-Zr合金组织与性能的影响[J/OL]. 中国稀土学报:1-11[2023-08-10]. http://kns.cnki.net/kcms/detail/11.2365.TG.20220920.1711.008.html. |
ZHANG Chenggong, QIAO Zhenxing, SHI Zhiming, et al. Effect of rare earth Y on microstructure and properties of high strength and high conductivity Cu-Cr-Zr alloy[J/OL]. Journal of the Chinese Society of Rare Earths:1-11[2023-08-10]. http://kns.cnki.net/kcms/detail/11.2365.TG.20220920.1711.008.html. | |
[52] | LIU Xibo, LIU Ping, JIA Shuguo, et al. Effects of trace Ce and Cr on properties of Cu-0.1Ag alloy[J]. Heat Treatment of Metals, 2005, 30(Suppl.):238-241. |
[53] |
CHANG Lili, JIA Bin, LI Shengli, et al. Influence of cerium on solidification,recrystallization and strengthening of Cu-Ag alloys[J]. Journal of Rare Earths, 2017, 35(10):1029-1034.
doi: 10.1016/S1002-0721(17)61009-3 |
[54] | 徐玉松, 旷万洪, 陶炳贞. 微量RE对Cu-Sn合金接触线性能的影响[J]. 热加工工艺, 2017, 46(10):81-85. |
XU Yusong, KUANG Wanhong, TAO Bingzhen. Effects of trace RE on properties of Cu-Sn alloy contact wire[J]. Hot Working Technology, 2017, 46(10):81-85. | |
[55] |
WANG Bingjie, ZHANG Yi, TIAN Baohong. Effects of Ce and Y addition on microstructure evolution and precipitation of Cu-Mg alloy hot deformation[J]. Journal of Alloys and Compounds, 2019, 781:118-130.
doi: 10.1016/j.jallcom.2018.12.022 |
[56] | 李伟, 刘平, 刘勇, 等. 微量稀土元素对Cu-Cr-Zr合金接触线抗软化性能的影响[J]. 金属热处理, 2005(2):38-40. |
LI Wei, LIU Ping, LIU Yong, et al. Effect of rarth earth elements on softening resistance of Cu-Cr-Zr alloy touching wire[J]. Heat Treatment of Metals, 2005(2):38-40. | |
[57] | 姜佳鑫, 温永清. 稀土在铜及铜合金中的作用及应用[J]. 稀土信息, 2021(5):12-18. |
JIANG Jiaxin, WEN Yongqing. The role and application of rare earths in copper and copper alloys[J]. Rare Earth Information, 2021(5):12-18. | |
[58] | 仲伟深, 孙跃军, 张伟强, 等. 提高铜银合金电气化铁路接触线导电性途径的研究[J]. 铸造, 2001(10):611-613. |
ZHONG Weishen, SUN Yuejun, ZHANG Weiqiang, et al. Study on the approach to improve the electrical conductivity of touching wire[J]. Foundry, 2001(10):611-613. | |
[59] | 邵利峰, 韦强, 徐立新, 等. 电力机车受电弓滑板研究进展[J]. 材料开发与应用, 2008(5):94-96. |
SHAO Lifeng, WEI Qiang, XU Lixin, et al. Current status and future trends of research on pantograph slide[J]. Development and Application of Materials, 2008(5):94-96. | |
[60] | 胡建红, 陈敬超, 李强, 等. 电力机车用滑动集电材料的研究及其选用[J]. 电工材料, 2004(1):38-42. |
HU Jianhong, CHEN Jingchao, LI Qiang, et al. Select and study on sliding-collecting-current materials in electric locomotive[J]. Electrical Engineering Materials, 2004(1):38-42. | |
[61] | 王贵青, 陈敬超, 孙加林. 电力机车受电弓滑板的研究状况及发展趋势[J]. 材料导报, 2003(1):18-20. |
WANG Guiqing, CHEN Jingchao, SUN Jialin. Current status and future trends of research on pantograph slide[J]. Materials Reports, 2003(1):18-20. | |
[62] | 松山晋作, 蔡千华. 集电装置材料的演变——受电弓滑板和接触网导线[J]. 国外机车车辆工艺, 2003(3):1-8. |
MATSUYAMA Shinsaku, CAI Qianhua. A short history of the materials for current collection-pantograph slider and contact wire[J]. Foreign Locomotive & Rolling Stock Technology, 2003(3):1-8. | |
[63] | 张秀兰. 电力机车受电弓滑板的调查分析[J]. 中国铁路, 1996(11):16-17. |
ZHANG Xiulan. Investigation and analysis of pantograph slide plates in electric locomotives[J]. China Railway, 1996(11):16-17. | |
[64] | 王绍复. 电力机车铝包碳滑板失效原因分析[J]. 机车电传动, 1995(5):46-48. |
WANG Shaofu. Analysis of the causes of failure of aluminium-clad carbon skateboards in electric locomotives[J]. Electric Drive for Locomotives, 1995(5):46-48. | |
[65] | 卓钺, 刘希从, 文思维, 等. 受电弓滑板用轻质高碳-石墨/铝复合材料[J]. 机车电传动, 2003(S1):37-38. |
ZHUO Yue, LIU Xicong, WEN Siwei, et al. Lightweight high carbon-graphite/aluminum composites applied for pantograph contact strips[J]. Electric Drive for Locomotives, 2003(S1):37-38. | |
[66] | 刘鉴洋. SAC型铝包复合型浸金属碳滑板[J]. 铁道机车车辆, 1995(2):37-38. |
LIU Jianyang. SAC type aluminium-clad composite impregnated metal-carbon skateboards[J]. Railway Locomotive & Car, 1995(2):37-38. | |
[67] | 杨祖德. 机械复合式受电弓滑板应用研究[J]. 机车电传动, 1995(3):26-31. |
YANG Zude. Mechanical composite pantograph slide plate application study[J]. Electric Drive for Locomotives, 1995(3):26-31. | |
[68] | 陈忠华, 郭凤仪, 董讷, 等. 新型受电弓滑板的设计与实现[J]. 煤炭科学技术, 2005(3):30-33. |
CHEN Zhonghua, GUO Fengyi, DONG Ne, et al. Design and practice on new sliding board of bow current collector[J]. Coal Science and Technology, 2005(3):30-33. | |
[69] | 黄汉忠, 李木林. 固体润滑材料在受电弓滑板上的应用[J]. 粉末冶金技术, 1997(1):43-45. |
HUANG Hanzhong, LI Mulin. Application of solid lubricant materials on pantograph slide plates[J]. Powder Metallurgy Technology, 1997(1):43-45. | |
[70] | 钱中良. 粉末冶金电力机车受电弓滑板的研究概况[J]. 粉末冶金工业, 2007(4):43-46. |
QIAN Zhongliang. Research on powder metallurgy pantograph strips for electric locomotive[J]. Powder Metallurgy Industry, 2007(4):43-46. | |
[71] | 韩苏易, 罗瑞盈, 李密丹, 等. 导电用炭基复合材料的研究进展[J]. 炭素技术, 2010, 29(5):24-31. |
HAN Suyi, LUO Ruiying, LI Midan, et al. Progress in conductive carbon-based composites[J]. Carbon Techniques, 2010, 29(5):24-31. | |
[72] | 侯明, 孙乐民, 李爱娜. 电力机车受电弓滑板的现状[J]. 粉末冶金技术, 2006(3):223-226. |
HOU Ming, SUN Lemin, LI Aina. Pantograph slide plates for electric locomotive and their recent development[J]. Powder Metallurgy Technology, 2006(3):223-226. | |
[73] | 冉丽萍, 易茂中, 王朝胜, 等. C/C-Cu复合材料的组织和摩擦磨损性能[J]. 中国有色金属学报, 2007(4):530-535. |
RAN Liping, YI Maozhong, WANG Chaosheng, et al. Friction and wear behavior of C/C-Cu composites fabricated by infiltrating molten Cu into C/C preforms[J]. The Chinese Journal of Nonferrous Metals, 2007(4):530-535. | |
[74] |
MA Shuai, XU Enze, ZHU Zhifeng, et al. Mechanical and wear performances of aluminum/sintered-carbon composites produced by pressure infiltration for pantograph sliders[J]. Powder Technology, 2017, 326:54-61.
doi: 10.1016/j.powtec.2017.12.027 |
[75] |
RAMBO C, TRAVITZKY N. Hybrid processing of TiC/TiCu/C composites with tailored hardness[J]. Journal of Composite Materials, 2021, 55(30):4481-4487.
doi: 10.1177/00219983211038751 |
[76] |
RAN Liping, PENG Ke, YI Maozhong, et al. Ablation property of a C/C-Cu composite prepared by pressureless infiltration[J]. Materials Letters, 2011, 65(13):2076-2078.
doi: 10.1016/j.matlet.2011.04.017 |
[77] |
SILVA V, FERNANDES C, SENOS A. Copper wettability on tungsten carbide surfaces[J]. Ceramics International, 2016, 42(1):1191-1196.
doi: 10.1016/j.ceramint.2015.09.050 |
[78] |
KENNEDY A, WOOD J, WEAGER B. The wetting and spontaneous infiltration of ceramics by molten copper[J]. Journal of Materials Science, 2000, 35(12):2909-2912.
doi: 10.1023/A:1004714407371 |
[79] | LIANG Yunhong, WANG Huiyua, YANG Yafeng, et al. Evolution process of the synthesis of TiC in the Cu-Ti-C system[J]. Journal of Alloys & Compounds, 2008, 452(2):298-303. |
[80] | 易振华, 易茂中, 冉丽萍, 等. 添加钛对炭/炭复合材料渗铜的影响[J]. 中国有色金属学报, 2006(7):1214-1218. |
YI Zhenhua, YI Maozhong, RAN Liping, et al. Influence of adding Ti on molten copper infiltration into C/C composites[J]. The Chinese Journal of Nonferrous Metals, 2006(7):1214-1218. | |
[81] |
ZHOU Wenyan, YI Maozhong, PENG Ke, et al. Preparation of a C/C-Cu composite with Mo2C coatings as a modification interlayer[J]. Materials Letters, 2015, 145(15):264-268.
doi: 10.1016/j.matlet.2015.01.111 |
[82] | 李箫波, 魏文赋, 左浩梓, 等. 基于Mo2C晶粒增强的铜/石墨复合材料浸渗特性与优化[J]. 中国电机工程学报, 2021, 41(22):7881-7889. |
LI Xiaobo, WEI Wenfu, ZUO Haozi, et al. Infiltration characteristics and optimization of copper/graphite composite reinforced by Mo2C grain[J]. Proceedings of the CSEE, 2021, 41(22):7881-7889. | |
[83] |
ZUO Haozi, WEI Wenfu, WU Guangning, et al. Performance enhancement of carbon/copper composites based on boron doping[J]. Journal of Alloys and Compounds, 2021, 876:160213.
doi: 10.1016/j.jallcom.2021.160213 |
[84] |
ZUO Haozi, YANG Zefeng, WEI Wenfu, et al. Synchronously improved mechanical strength and electrical conductivity of Carbon/Copper composites by forming Fe3C interlayer at C/Cu interface[J]. Materials Today Communications, 2021, 28(13):102661.
doi: 10.1016/j.mtcomm.2021.102661 |
[85] | 高春明, 凌跃成, 钱振华, 等. 减磨型碳纤维复合材料受电弓滑板的研制[J]. 电力机车与城轨车辆, 2004(4):31-33. |
GAO Chunming, LING Yuecheng, QIAN Zhenhua, et al. Development of wearless carbon fibre composite pantograph slide bar[J]. Electric Locomotives & Mass Transit Vehicles, 2004(4):31-33. | |
[86] | 袁华. 碳纤维增强受电弓滑板的制备与性能及摩擦磨损机理的研究[D]. 济南: 山东大学, 2013. |
YUAN Hua. Preparation and performance and anti-wear mechanism of carbon fiber reinforced contact strip[D]. Jinan: Shandong University, 2013. | |
[87] | 久保田喜雄, 彭惠民. C/C复合材料应用于新干线车辆的受电弓滑板[J]. 国外机车车辆工艺, 2020(5):21-26. |
KUBOTA Yoshitaka, PENG Huimin. A basic study on the application of C/C composite pantograph contact strip to Shinkansen vehicle[J]. Foreign Locomotive & Rolling Stock Technology, 2020(5):21-26. | |
[88] | 杨连威, 姚广春, 陆阳. 新型铜-碳复合受电弓滑板的制备[J]. 过程工程学报, 2005(4):460-463. |
YANG Lianwei, YAO Guangchun, LU Yang. Research on new copper-carbon composite pantograph slide plate[J]. The Chinese Journal of Process Engineering, 2005(4):460-463. | |
[89] |
WU Guangning, DONG Keliang, XU Zhilei, et al. Pantograph-catenary electrical contact system of high-speed railways:Recent progress,challenges,and outlooks[J]. Railway Engineering Science, 2022, 30(4):437-467.
doi: 10.1007/s40534-022-00281-2 |
[90] |
PITTMAN C, HE G, WU B. Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine[J]. Carbon, 1997, 35(3):317-331.
doi: 10.1016/S0008-6223(97)89608-X |
[91] |
LIU Xin, YANG Changling, LU Yonggen. Contrastive study of anodic oxidation on carbon fibers and graphite fibers[J]. Applied Surface Science, 2012, 258(10):4268-4275.
doi: 10.1016/j.apsusc.2011.12.076 |
[92] |
ALTAY L, BOZACI E, ATAGUR M, et al. The effect of atmospheric plasma treatment of recycled carbon fiber at different plasma powers on recycled carbon fiber and its polypropylene composites[J]. Journal of Applied Polymer Science, 2019, 136(9):47131.
doi: 10.1002/app.v136.9 |
[93] |
LI Junqing, HUANG Yudong, XU Zhiwei, et al. High-energy radiation technique treat on the surface of carbon fiber[J]. Materials Chemistry and Physics, 2005, 94(2-3):315-321.
doi: 10.1016/j.matchemphys.2005.05.007 |
[94] |
QIN Jianjie, WANG Chengguo, YAO Zhiqiang, et al. Growing carbon nanotubes on continuous carbon fibers to produce composites with improved interfacial properties:A step towards commercial production and application[J]. Composites Science and Technology, 2021, 211:108870.
doi: 10.1016/j.compscitech.2021.108870 |
[95] | SHARMA M, GAO S, MAEDER E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science & Technology, 2014, 102:35-50. |
[96] | LI Xiang, YANG Zefeng, ZHAO Yang, et al. Excellent interfacial structural integrity of pre-oxidized carbon fiber-reinforced carbon-carbon composites[J]. Composite Interfaces, 2022(4):29. |
[97] |
LI Jie, YANG Zefeng, ZHAO Yang, et al. Improving carbon/carbon composites mechanical and thermal properties by the co-carbonization of pre-oxidized carbon fiber and pitch[J]. Journal of Applied Polymer Science, 2022, 139(13):51846.
doi: 10.1002/app.v139.13 |
[98] |
CHEN Qichen, YANG Zefeng, LIN Jiahui, et al. Scalable,low-cost,and environment-friendly preparation of high strength carbon-matrix composites with tree-root-like structured reinforcements[J]. Composites Communications, 2022, 32:101149.
doi: 10.1016/j.coco.2022.101149 |
[99] | 翟洪祥, 汪长安. Ti3SiC2材料在受电弓滑板中的应用研究[J]. 机车电传动, 2003(S1):43-45. |
ZHAI Hongxiang, WANG Changan. Application of Ti3SiC2 materials in contact strips of pantograph[J]. Electric Drive for Locomotives, 2003(S1):43-45. | |
[100] |
KEI S, TAKESHI Y, JUNICHIRO M, et al. Friction and wear properties of copper/carbon/RB ceramics composite materials under dry condition[J]. Tribology Online, 2008, 3(4):222-227.
doi: 10.2474/trol.3.222 |
[101] | HUANG Xiaochen, FENG Yi, QIAN Gang, et al. Comparison of electrical ablation properties between pantograph materials:Ti3AlC2 and Cu-Ti3AlC2[J]. Rare Metal Materials and Engineering, 2020, 49(1):34-41. |
[102] | 许少凡, 许少平, 江沣, 等. 导电陶瓷Ti3SiC2-Cu-C复合材料的制备与性能研究[J]. 材料热处理学报, 2009, 30(5):35-38. |
XU Shaofan, XU Shaoping, JIANG Feng, et al. Preparation and properties of conductive ceramic Ti3SiC2-Cu-C composites[J]. Transactions of Materials and Heat Treatment, 2009, 30(5):35-38. | |
[103] | 严石, 梅炳初, 周卫兵. 新型受电弓滑板材料的研究[J]. 机车电传动, 2009(6):21-23. |
YAN Shi, MEI Bingchu, ZHOU Weibing. Research on new material for pantograph slide plates[J]. Electric Drive for Locomotives, 2009(6):21-23. | |
[104] |
JIANG Xiaosong, SONG Tingfeng, SHAO Zheyi, et al. Synergetic effect of graphene and MWCNTs on microstructure and mechanical properties of Cu/Ti3SiC2/C nanocomposites[J]. Nanoscale Research Letters, 2017, 12(1):607.
doi: 10.1186/s11671-017-2378-0 pmid: 29181638 |
[1] | WEI Ru, LIU Jiangtao, GAO Haiyang, CHEN Tingji, YAN Qiaona, KONG Weijun. Study on the Effect of the Metal Path on the Distribution of Metro Stray Currents in the Power Grid [J]. Journal of Electrical Engineering, 2023, 18(3): 90-98. |
[2] | ZHANG Xiaohu, ZHANG Xiong, ZHANG Keliang, SUN Xianzhong, WANG Kai, MA Yanwei. Application of Energy Storage Technology in Regenerative Braking Energy Recovery of Rail Transit [J]. Journal of Electrical Engineering, 2023, 18(2): 210-220. |
[3] | HUI Lichuan, CHEN Xuelian, MENG Sibo. Analysis and Research on Influencing Factors of Pantograph-catenary Sliding Electrical Contact Failure [J]. Journal of Electrical Engineering, 2023, 18(2): 277-286. |
[4] | ZOU Dong, ZHONG Shuncong, GENG Yan, CHENG Yao, MO Zhigang, XU Kejia, SONG Bing, CHENG Bin, ZHANG Shiyu, WANG Zhicheng, HUA Lujie, ZHANG Yanan. Status Analysis and Prevention-treatment Technology Study of Abnormal Wear of Pantograph Catenary System in Urban Rail Transit [J]. Journal of Mechanical Engineering, 2023, 59(10): 152-178. |
[5] | XU Hanwen, DU Xing, HAN Jian, LIU Moukai, XIAO Xinbiao, JIN Xuesong. Study on the Influence of Rail Vibration Absorber on Wheel/Rail Vibration and Noise [J]. Journal of Mechanical Engineering, 2021, 57(18): 126-136. |
[6] | XIAO Zilin. Simulation Research on DC Traction Power Supply System for Renewable Energy Utilization of Urban Rail Transit [J]. Journal of Electrical Engineering, 2021, 16(1): 166-172. |
[7] | LI Ning,YU Jin. Research on Train Energy Consumption Test Device and Analysis Method [J]. Journal of Electrical Engineering, 2020, 15(3): 50-56. |
[8] | Yang Xiong,Zhang Fengge,Wang Xiuping. Electromagnetic Characteristics Analysis of Primary Permanent Magnet Linear Motor for Rail Transit [J]. Journal of Electrical Engineering, 2018, 13(5): 1-7. |
[9] | Cao Ruiwu,Cheng Ming. Linear Flux-Switching Permanent Magnet Motors and Drive System [J]. Journal of Electrical Engineering, 2016, 11(1): 12-18. |
[10] | DING Tao;WANG Xin;CHEN Guangxiong;ZHANG Weihua;ZHOU Wenxiang. Experimental Study on Friction and Wear Behavior of Carbon Strip/Copper Contact Wire at Speeds of 120~170 km/h [J]. , 2010, 46(16): 36-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||