Journal of Electrical Engineering ›› 2022, Vol. 17 ›› Issue (4): 103-112.doi: 10.11985/2022.04.011
Previous Articles Next Articles
ZHANG Yuxin1(), WU Jianhua2,3(
), ZHENG Linfeng2,3(
), YE Tao1(
)
Received:
2022-09-01
Revised:
2022-11-03
Online:
2022-12-25
Published:
2023-02-03
Contact:
ZHENG Linfeng, E-mail:lfzheng@jnu.edu.cn
CLC Number:
ZHANG Yuxin, WU Jianhua, ZHENG Linfeng, YE Tao. Design and Analysis of Lithium-ion Battery Management System Based on Digital Twin[J]. Journal of Electrical Engineering, 2022, 17(4): 103-112.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 曹志成, 周开运, 朱家立, 等. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8):2664-2670. |
CAO Zhicheng, ZHOU Kaiyun, ZHU Jiali, et al. Chinese patent analysis on fire protection technology of lithium ion battery energy storage system[J]. Energy Storage Science & Technology, 2022, 11(8):2664-2670. | |
[2] | 汪菲娜. 电化学储能项目投资构成及经济指标分析[J]. 价值工程, 2022, 41(14):22-25. |
WANG Feina. Investment structure and economic index analysis of electrochemical energy storage project[J]. Value Engineering, 2002, 41(14):22-25. | |
[3] |
MENG J, LUO G, RICCO M, et al. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[J]. Applied Sciences, 2018, 8(5):659-675.
doi: 10.3390/app8050659 |
[4] |
WU B, WIDANAGE W D, YANG S, et al. Battery digital twins:Perspectives on the fusion of models,data and artificial intelligence for smart battery management systems[J]. Energy and AI, 2020, 1:100016.
doi: 10.1016/j.egyai.2020.100016 |
[5] |
TAO F, ZHANG H, LIU A, et al. Digital twin in industry:State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2018, 15(4):2405-2415.
doi: 10.1109/TII.2018.2873186 |
[6] | 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768. |
ZHUANG Cunbo, LIU Jianhua, XIONG Hui, et al. The connotation,architecture and development trend of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768. | |
[7] |
陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1):1-16.
doi: 10.13196/j.cims.2021.01.001 |
TAO Fei, ZHANG He, QI Qinglin, et al. Theory and application of digital twin model[J]. Computer Integrated Manufacturing Systems, 2021, 27(1):1-16. | |
[8] |
ROSEN R, VON W G, LO G, et al. About the importance of autonomy and digital twins for the future of manufacturing[J]. IFAC-PapersOnLine, 2015, 48(3):567-572.
doi: 10.1016/j.ifacol.2015.06.141 |
[9] | GRIEVES M. Digital twin:Manufacturing excellence through virtual factory replication[R/OL]. White Paper, 2014, 1(2014):1-7. |
[10] |
GITHENS G. Product lifecycle management:Driving the next generation of lean thinking by Michael Grieves[J]. Journal of Product Innovation Management, 2007, 24(3):278-280.
doi: 10.1111/j.1540-5885.2007.00250_2.x |
[11] | GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and US Air Force vehicles[C]// 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012:1818. |
[12] | RIOS J, HERNANDEZ J C, OLIVA M, et al. Product avatar as digital counterpart of a physical individual product:Literature review and implications in an aircraft[J]. Transdisciplinary Lifecycle Analysis of Systems, 2015:657-666. |
[13] |
BATTY M. Digital twins[J]. Environment and Planning B:Urban Analytics and City Science, 2018, 45(5):817-820.
doi: 10.1177/2399808318796416 |
[14] | 陈旭海, 罗景生, 陈永福, 等. 基于Ansys的磷酸铁锂储能电池系统热分析及优化[J]. 电器与能效管理技术, 2020(10):41-46. |
CHEN Xuhai, LUO Jingsheng, CHEN Yongfu, et al. Thermal analysis and optimization of lithium iron phosphate energy storage battery system based on Ansys[J]. Electrical Appliances & Energy Efficiency Management Technology, 2020(10):41-46. | |
[15] |
李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报, 2019, 31(3):385-392.
doi: 10.16182/j.issn1004731x.joss.19-0025 |
LI Xin, LIU Xiu, WAN Xinxin. Review of application and security development of digital twin[J]. Journal of System Simulation, 2019, 31(3):385-392.
doi: 10.16182/j.issn1004731x.joss.19-0025 |
|
[16] | 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1):1-9. |
TAO Fei, ZHANG Meng, CHENG Jiangfeng, et al. Digital twin workshop:A new mode of future workshop run[J]. Computer Integrated Manufacturing Systems, 2017, 23(1):1-9. | |
[17] |
TAO F, CHENG J, QI Q, et al. Digital twin-driven product design,manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9):3563-3576.
doi: 10.1007/s00170-017-0233-1 |
[18] | 郭东升, 鲍劲松, 史恭威, 等. 基于数字孪生的航天结构件制造车间建模研究[J]. 东华大学学报, 2018, 44(4):578-585,607. |
GUO Dongsheng, BAO Jinsong, SHI Gongwei, et al. Modeling of aerospace structural parts manufacturing workshop based on digital twin[J]. Journal of Donghua University, 2018, 44(4):578-585,607. | |
[19] | 陶飞, 张贺, 戚庆林, 等. 数字孪生十问:分析与思考[J]. 计算机集成制造系统, 2020, 26(1):1-17. |
TAO Fei, ZHANG He, QI Qinglin, et al. Digital twin 10 q:Analysis and thinking[J]. Computer Integrated Manufacturing Systems, 2020, 26(1):1-17. | |
[20] | 汪玉洁, 杨晓宇, 陈宗海. 基于数字孪生的电动汽车动力系统实验教学方案[J]. 教育现代化, 2019, 6(83):76-78. |
WANG Yujie, YANG Xiaoyu, CHEN Zonghai. Electric power system based on digital twin experiment teaching plan[J]. Journal of Education Modernization, 2019, 6(83):76-78. | |
[21] | MERKLE L, SEGURA A S, GRUMMEL J T, et al. Architecture of a digital twin for enabling digital services for battery systems[C]// 2019 IEEE International Conference on Industrial Cyber Physical Systems(ICPS). IEEE, 2019:155-160. |
[22] | 熊瑞, 田金鹏, 卢家欢. 一种应用数字孪生技术的锂离子电池寿命预测方法:中国,CN111610448A[P]. 2020-09-01. |
XIONG Rui, TIAN Jinpeng, LU Jiahuan. A method for life prediction of lithium ion battery based on digital twin technology:China,CN111610448A[P]. 2020-09-01. | |
[23] |
LI W, RENTEMEISTER M, BADEDA J, et al. Digital twin for battery systems:Cloud battery management system with online state-of-charge and state-of-health estimation[J]. Journal of Energy Storage, 2020, 30:101557.
doi: 10.1016/j.est.2020.101557 |
[24] |
MADNI A M, MADNI C C, LUCERO S D. Leveraging digital twin technology in model-based systems engineering[J]. Systems, 2019, 7(1):7-18.
doi: 10.3390/systems7010007 |
[25] | TUEGEL E. The airframe digital twin:Some challenges to realization[C]// 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012:1812. |
[26] | 张天瀛, 姬杭. 数字孪生综述[C]// 2019中国系统仿真与虚拟现实技术高层论坛论文集, 2019:77-82. |
ZHANG Tianying, JI Hang. Digital twin review[C]// 2019 China System Simulation and Virtual Reality Technology BBS on Top, 2019:77-82. | |
[27] | ZAKRAJSEK A J, MALL S. The development and use of a digital twin model for tire touchdown health monitoring[C]// 58th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference, 2017:863. |
[28] | MERKLE L. Cloud-based battery digital twin middleware using model-based development[C]// Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control, 2019:1-7. |
[29] | WEISSIG C, SCHREER O, EISERT P, et al. The ultimate immersive experience:Panoramic 3D video acquisition[C]// International Conference on Multimedia Modeling,Berlin,Heidelberg. Springer, 2012:671-681. |
[30] | 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11):1-10. |
LIU Datong, GUO Kai, WANG Benkuan, et al. Digital twin technology review and prospect[J]. Journal of Instruments and Meters, 2018, 39(11):1-10. | |
[31] |
MENG J, LUO G, RICCO M, et al. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[J]. Applied Sciences, 2018, 8(5):659-681.
doi: 10.3390/app8050659 |
[32] |
胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16):20-31.
doi: 10.3901/JME.2017.16.020 |
HU Xiaosong, TANG Xiaolin. Review on modeling methods of lithium-ion power battery for electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16):20-31.
doi: 10.3901/JME.2017.16.020 |
|
[33] | CHATURVEDI N A, KLEIN R, CHRISTENSEN J, et al. Algorithms for advanced battery-management systems[J]. IEEE Control Systems Magazine, 2010, 30(3):49-68. |
[34] | 刘鹏, 梁新成, 黄国钧. 锂离子电池模型综述[J]. 电池工业, 2021, 25(2):106-112. |
LIU Peng, LIANG Xincheng, HUANG Guojun. A review of lithium-ion battery models[J]. Battery Industry, 2021, 25(2):106-112. | |
[35] | 方儒卿, 张娜, 李哲. 3类锂离子电池多孔电极模型比较研究及电池正向设计应用[J]. 清华大学学报, 2021, 61(10):1055-1065. |
FANG Ruqing, ZHANG Na, LI Zhe. Comparative study on porous electrode models of three kinds of lithium ion batteries and their application in forward design[J]. Journal of Tsinghua University, 2021, 61(10):1055-1065. | |
[36] | NEWMAN J, THOMAS K E, HAFEZI H, et al. Modeling of lithium-ion batteries[J]. Journal of Power Sources, 2003, 119:838-843. |
[37] | 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比[J]. 物理学报, 2021, 70(13):429-440. |
LI Tao, CHENG Ximing, HU Chenhua. Performance comparison of electrochemical order reduction models for lithium-ion batteries[J]. Acta Physica Sinica, 2021, 70(13):429-440. | |
[38] |
ZHANG D, POPOV B N, WHITE R E. Modeling lithium intercalation of a single spinel particle under potentiodynamic control[J]. Journal of the Electrochemical Society, 2000, 147(3):831-838.
doi: 10.1149/1.1393279 |
[39] |
ROMERO-BECERRIL A, ALVAREZ-ICAZA L. Comparison of discretization methods applied to the single-particle model of lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(23):10267-10279.
doi: 10.1016/j.jpowsour.2011.06.091 |
[40] |
SMITH K A, RAHN C D, WANG C Y. Control oriented 1D electrochemical model of lithium-ion battery[J]. Energy Conversion and Management, 2007, 48(9):2565-2578.
doi: 10.1016/j.enconman.2007.03.015 |
[41] | MELCHER A, ZIEBERT C, LEI B, et al. Modeling and simulation of thermal runaway in cylindrical 18650 lithium-ion batteries[C]// The Proceedings of the 2016 COMSOL Conference, 2016. |
[42] |
BARCELLONA S, PIEGARI L. Lithium-ion battery models and parameter identification techniques[J]. Energies, 2017, 10(12):2007-2030.
doi: 10.3390/en10122007 |
[43] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12.
doi: 10.1149/1.2113792 |
[44] |
KIM U S, YI J, SHIN C B, et al. Modelling the thermal behaviour of a lithium-ion battery during charge[J]. Journal of Power Sources, 2011, 196(11):5115-5121.
doi: 10.1016/j.jpowsour.2011.01.103 |
[45] |
KIM U S, SHIN C B, KIM C S. Modeling for the scale-up of a lithium-ion polymer battery[J]. Journal of Power Sources, 2009, 189(1):841-846.
doi: 10.1016/j.jpowsour.2008.10.019 |
[46] | 王楠, 李振, 郝添翼, 等. 基于电化学-热耦合模型的储能用锂离子电池的发热状况研究[J]. 太阳能, 2022(5):77-86. |
WANG Nan, LI Zhen, HAO Tianyi, et al. Thermal characteristics of lithium-ion batteries for energy storage based on electrochemical and thermal coupling model[J]. Solar Energy, 2022(5):77-86. | |
[47] |
匡柯, 孙跃东, 任东生, 等. 车用锂离子电池电化学-热耦合高效建模方法[J]. 机械工程学报, 2021, 57(14):10-22.
doi: 10.3901/JME.2021.14.010 |
KUANG Ke, SUN Yuedong, REN Dongsheng, et al. High efficient modeling method of electrochemical-thermal coupling for vehicle lithium-ion battery[J]. Journal of Mechanical Engineering, 2021, 57(14):10-22.
doi: 10.3901/JME.2021.14.010 |
|
[48] |
韦雪晴, 邓海鹏, 周宇, 等. 锂离子电池组的三维电化学-热耦合仿真分析[J/OL]. 储能科学与技术:1-16[2022-11-03]. DOI:10.19799/j.cnki.2095-4239.2022.0411.
doi: 10.19799/j.cnki.2095-4239.2022.0411 |
WEI Xueqing, DENG Haipeng, ZHOU Yu, et al. Three-dimensional electrochemical lithium-ion battery pack-thermal coupling simulation[J/OL]. Energy Storage Science and Technology:1-16[2022-11-03]. DOI:10.19799/j.cnki.2095-4239.2022.0411.
doi: 10.19799/j.cnki.2095-4239.2022.0411 |
|
[49] |
MASTALI M, FOREMAN E, MODJTAHEDI A, et al. Electrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteries[J]. International Journal of Thermal Sciences, 2018, 129:218-230.
doi: 10.1016/j.ijthermalsci.2018.03.004 |
[50] |
TANG Y, JIA M, LI J, et al. Numerical analysis of distribution and evolution of reaction current density in discharge process of lithium-ion power battery[J]. Journal of the Electrochemical Society, 2014, 161(8):E3021.
doi: 10.1149/2.004408jes |
[51] |
WANG X, WANG Y, TAO F, et al. New paradigm of data-driven smart customization through digital twin[J]. Journal of Manufacturing Systems, 2021, 58:270-280.
doi: 10.1016/j.jmsy.2020.07.023 |
[52] | 宁之成, 刘潇翔, 王淑一. 机理与数据融合的航天器控制系统数字孪生建模方法[J]. 空间控制技术与应用, 2022, 48(2):1-7. |
NING Zhicheng, LIU Xiaoxiang, WANG Shuyi. Digital twin modeling method for spacecraft control systems based on mechanism and data fusion[J]. Space Control Technology and Application, 2022, 48(2):1-7. | |
[53] |
LIU J, WANG W, MA F, et al. A data-model-fusion prognostic framework for dynamic system state forecasting[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4):814-823.
doi: 10.1016/j.engappai.2012.02.015 |
[54] | XU Jianxin, HOU Zhongsheng. Notes on data-driven system approaches[J]. Acta Automatica Sinica, 2009, 35(6):668-675. |
[55] | 李少年, 李毅, 魏列江, 等. 基于改进卡尔曼数据融合算法的温室物联网采集系统研究[J]. 传感技术学报, 2022, 35(4):558-564. |
LI Shaonian, LI Yi, WEI Liejiang, et al. Research on greenhouse IOT acquisition system based on improved Kalman data fusion algorithm[J]. Journal of Sensing Technology, 2022, 35(4):558-564. | |
[56] | 杨思. 数据—模型融合驱动的地铁车轮磨耗预测分析[D]. 北京: 北京建筑大学, 2019. |
YANG Si. Prediction and analysis of subway wheel wear driven by data-model fusion[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019. | |
[57] | 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8):1603-1611. |
TAO Fei, CHENG Ying, CHENG Jiangfeng, et al. Theory and technology of information physical fusion in digital twin workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(8):1603-1611. | |
[58] | 赵广辉, 汪玉洁. 一种应用数字孪生技术的水热管理系统[C]// 第22届中国系统仿真技术及其应用学术年会(CCSSTA22nd 2021)论文集, 2021:103-106. |
ZHAO Guanghui, WANG Yujie. An application of digital technology of twin water thermal management system[C]// 22nd Chinese System Simulation Technology and Application of Academic Conference (2021) CCSSTA22nd Proceedings, 2021:103-106. | |
[59] | 沈洁, 项颢, 贾琨. 基于电子工业物联网模型的数字孪生系统及其构建[J]. 电力信息与通信技术, 2019, 17(3):22-27. |
SHEN Jie, XIANG Hao, JIA Kun. Twin system based on digital electronic industrial IOT model and its construction[J]. Electric Power Information and Communication Technology, 2019, 17(3):22-27. | |
[60] | MIGUEL E, IRAOLA U. Module-level modeling approach for a cloud based digital twin platform for Li-ion batteries[C]// 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), October 25-28,2021,Gijon,Spain. IEEE, 2021:1-6. |
[61] | 顾单飞, 宋佩, 丁鹏, 等. 锂电池的单体数字孪生模型建立方法、系统、终端和介质:中国,CN114722625A[P]. 2022-07-08. |
GU Danfei, SONG Pei, DING Peng, et al. Establishment method,system,terminal and medium of single digital twin model of lithium battery:China,CN114722625A[P]. 2022-07-08. | |
[62] | 赵博, 刘世杰, 周兴振, 等. 一种基于数字孪生的车载锂离子电池建模及故障诊断方法:中国,CN114329760A[P]. 2022-04-12. |
ZHAO Bo, LIU Shijie, ZHOU Xingzhen, et al. A modeling and fault diagnosis method for vehicle lithium ion battery based on digital twin:China,CN114329760A[P]. 2022-04-12. | |
[63] | 杨世春, 周思达, 华旸, 等. 一种基于数字孪生的动力电池组管理系统及方法:中国,CN111027165B[P]. 2022-05-03. |
YANG Shichun, ZHOU Sida, HUA Yang, et al. A power battery pack management system and method based on digital twin:China,CN111027165B[P]. 2022-05-03. |
[1] | ZHOU Zude, YAO Bitao, TAN Yuegang, LIU Mingyao, LI Tianliang, WEI Qin. Analysis and Thoughts on Application of Optical Fibre Sensing in Manufacturing [J]. Journal of Mechanical Engineering, 2022, 58(8): 3-26. |
[2] | XU Binxiang, ZHENG Linfeng, HUANG Yiheng, XIAO Zhineng, WANG Xinyue. Fast Estimating the State of Health of Lithium-ion Batteries Based on Improved Least Squares Support Vector Machine [J]. Journal of Electrical Engineering, 2022, 17(4): 11-19. |
[3] | LIU Jiahao, MA Qingwen. Hybrid Battery Thermal Management System with New Fins Added to Immersion Cooling [J]. Journal of Electrical Engineering, 2022, 17(4): 113-121. |
[4] | FANG Deyu, CHU Xiao, LIU Tao, LI Junfu. Research on Health Assessment Method of Lithium-ion Battery Based on Data-model Hybrid Drive [J]. Journal of Electrical Engineering, 2022, 17(4): 20-31. |
[5] | LI Yanmei, LIU Huihan, ZHANG Chaolong, LUO Laijing. Lithium-ion Battery RUL Prediction Method Based on Double Gaussian Model [J]. Journal of Electrical Engineering, 2022, 17(4): 32-40. |
[6] | LIU Wangzeyu, LI Qing, YU Tiantian, XIONG Jinchen, ZHANG Hongyuan, DONG Ming, REN Ming. Study on Impedance Characteristics of Lithium-ion Battery in Over Discharge State [J]. Journal of Electrical Engineering, 2022, 17(4): 51-60. |
[7] | WANG Gongquan, KONG Depeng, PING Ping, LÜ Hongpeng. Thermal Runaway Modeling of Lithium-ion Batteries: A Review [J]. Journal of Electrical Engineering, 2022, 17(4): 61-71. |
[8] | CHEN Yin, XIAO Ru, CUI Yilin, CHEN Mingyi. Research Review on Early Warning and Suppression Technology of Lithium-ion Battery Fire in Energy Storage Power Station [J]. Journal of Electrical Engineering, 2022, 17(4): 72-87. |
[9] | QI Siqing, SU Linhua, FAN Xinyu, JIANG Nan, WANG Pengfei. Study on the Cathode Materials’ Deterioration Mechanism for Lithium-ion Batteries at Low Temperature [J]. Journal of Electrical Engineering, 2022, 17(3): 19-29. |
[10] | CHEN Xinyang, YAO Tianhao, WANG Hongkang. Research Progress in Modification of Tin-antimony Alloy Anode Materials for Lithium/Sodium Ion Batteries [J]. Journal of Electrical Engineering, 2022, 17(3): 2-11. |
[11] | ZHOU Jingsen, WEI Jinxiao, XIE Gangwen, RAN Li, ZHANG Youqiang, HU Jiayu. Architecture Design of Digital Twin Platform for AC & DC Transmission System with Large Scale New Energy [J]. Journal of Electrical Engineering, 2022, 17(3): 219-226. |
[12] | XU Maoshu, SHEN Yi, WANG Sheng, ZHANG E, LI Haomiao, ZHOU Min, WANG Wei, WANG Kangli, JIANG Kai. Application and Enlightenment of Advanced Sensing Technology in Battery State Estimation [J]. Journal of Electrical Engineering, 2022, 17(3): 40-57. |
[13] | DANG Yuemao, ZHANG Xuechun, XU Chuyi, JIANG Quanyuan. Lithium-ion Battery State of Health Assessment Algorithm Based on DT Curve [J]. Journal of Electrical Engineering, 2022, 17(3): 58-65. |
[14] | WU Chunling, CHENG Yanqing, XU Xianfeng, MENG Jinhao, XIE Meimei. SOC Estimation of Lithium Battery Based on Monte Carlo and SH-AUKF Algorithm [J]. Journal of Electrical Engineering, 2022, 17(3): 66-75. |
[15] | ZHANG Bozhao, GOU Bin, XU Yanzhang. Effect Analysis of Recycling and Storage Conditions on Graphite/LiCoO2 Battery Life [J]. Journal of Electrical Engineering, 2022, 17(2): 38-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||