Journal of Electrical Engineering ›› 2022, Vol. 17 ›› Issue (2): 27-37.doi: 10.11985/2022.02.004
Previous Articles Next Articles
XIANG Chaoqun(), YIN Xueyao(
), CHENG Shu, YU Tianjian, ZHANG Lulin
Received:
2022-02-28
Revised:
2022-05-15
Online:
2022-06-25
Published:
2022-08-08
CLC Number:
XIANG Chaoqun, YIN Xueyao, CHENG Shu, YU Tianjian, ZHANG Lulin. Study on Characteristic Parameters of IGBT Module Life of Qinghai-Tibet Bus Auxiliary Inverter[J]. Journal of Electrical Engineering, 2022, 17(2): 27-37.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
测试 参数 | 测试条件 | 失效 原则 | ||
---|---|---|---|---|
VCE(sat) | BSM300GA120DN2 | VGE=15 V, IC=300 A | +5% | |
BSM100GB120DN2K | VGE=15 V, IC=100 A | |||
ICES | VCE=1 200 V, VGE=0 V | +20% | ||
VGE(th) | BSM300GA120DN2 | VGE=VCE, IC=12 mA | +20% | |
BSM100GB120DN2K | VGE=VCE, IC=4 mA | |||
IGES | VGE=20 V, VCE=0 V | +20% | ||
Rth(j-c) | BSM300GA120DN2 | VGE=15 V, IC=200 A, Im=50 mA | +20% | |
BSM100GB120DN2K | VGE=15 V, IC=50 A, Im=50 mA |
"
功率循环 试验项目 | 测试条件 | 样品 编号 | |
---|---|---|---|
秒级 QL-01 | BSM300GA120DN2 | Tjmax=120 ℃, Tjmin=30 ℃, ΔTj=90 ℃, tcycle=10 s, 共进行180 000 次 循环 | 3-5-3 3-5-4 3-5-5 3-5-6 |
BSM100GB120DN2K | 1-5-7 1-5-8 1-5-9 | ||
分钟级 QL-02-1 | BSM300GA120DN2 | Tjmax=140 ℃, Tjmin=15 ℃, ΔTj=125 ℃, tcycle=2 min, 共进行19 000次循环 | 3-1-1 3-1-2 3-5-5 3-5-7 3-5-9 |
BSM100GB120DN2K | 1-1-1 1-5-1 1-5-4 1-5-6 | ||
分钟级 QL-02-2 | BSM300GA120DN2 | Tjmax=115 ℃, Tjmin=25 ℃, ΔTj=90 ℃, tcycle=1.5 min, 共进行24 000次循环 | 3-1-3 3-5-1 3-5-2 3-5-6 |
BSM100GB120DN2K | 1-1-2 1-5-2 1-5-3 1-5-5 |
"
样品编号 | VCE(sat) | ICES | VGE(th) | IGES | 是(1)否(0)失效 |
---|---|---|---|---|---|
3-5-3 | 13.28 | 73 974.07 | 0 | 373 622.63 | 1 |
3-5-4 | 12.41 | 36 075.40 | 0.69 | 11.99 | 1 |
3-5-8 | 9.52 | 46 328.57 | -71.45 | 172 116 939.59 | 1 |
3-5-10 | 12.50 | 1.25 | 0.34 | 16 933.71 | 1 |
3-1-1 | 1 136.16 | 67 126.89 | 20.90 | 190 476 090.48 | 1 |
3-1-2 | 1 117.99 | 55 072.41 | 26.74 | 218 340 511.35 | 1 |
3-5-5 | 364.68 | 6.15 | -96.43 | 174 215 927.87 | 1 |
3-5-7 | 5.77 | 3.81 | 1.05 | 3.31 | 1 |
3-5-9 | 13.31 | 0.88 | 0.68 | 1.14 | 1 |
3-1-3 | 0.37 | 1.76 | 0 | 7.12 | 0 |
3-5-1 | 5.95 | 2.97 | -0.34 | 7.89 | 1 |
3-5-2 | 2.26 | 1.80 | -0.35 | 7.54 | 0 |
3-5-6 | 2.96 | 2.91 | -0.36 | 4.86 | 0 |
1-5-7 | 4.80 | 0.24 | 0.39 | -1.08 | 0 |
1-5-8 | 3.97 | -0.47 | 0.37 | 2.82 | 0 |
1-5-9 | 0.39 | -3.56 | -0.68 | 4.73 | 0 |
1-1-1 | 997.14 | 368 563.59 | 19.14 | 1 999 999 900.00 | 1 |
1-5-1 | -3.60 | -3.89 | 0.36 | 13.60 | 0 |
1-5-4 | -2.81 | -1.82 | 0.73 | 3.85 | 0 |
1-5-6 | -1.57 | -2.79 | 1.10 | 9.03 | 0 |
1-1-2 | 669.44 | 302 930.30 | -72.63 | 1 351 351 251.35 | 1 |
1-5-2 | -1.17 | 2.19 | 0.68 | 3.33 | 0 |
1-5-3 | -1.54 | 0.80 | 0.38 | 2.54 | 0 |
1-5-5 | -0.80 | -1.29 | 0.38 | 6.62 | 0 |
[1] | GOPIREDDY L R, TOLBERT L M, OZPINECI B. Power cycle testing of power switches:A literature survey[J]. IEEE Transactions on Power Electronics, 2014, 30(5):2465-2473. |
[2] | NIU H. A review of power cycle driven fatigue,aging,and failure modes for semiconductor power modules[C]// 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 2017:1-8. |
[3] |
OH H, HAN B, MCCLUSKEY P, et al. Physics-of-failure,condition monitoring,and prognostics of insulated gate bipolar transistor modules:A review[J]. IEEE Transactions on Power Electronics, 2015, 30(5):2413-2426.
doi: 10.1109/TPEL.2014.2346485 |
[4] | 刘洪纪. IGBT快速功率循环老化试验装置的研究与设计[D]. 重庆: 重庆大学, 2015. |
LIU Hongji. Research and design of IGBT fast power cycle aging test device[D]. Chongqing: Chongqing University, 2015. | |
[5] | CHOI U M, JØRGENSEN S, BLAABJERG F. Advanced accelerated power cycling test for reliability investigation of power device modules[J]. IEEE Transactions on Power Electronics, 2016, 31(12):8371-8386. |
[6] |
WANG Z, TIAN B, QIAO W, et al. Real-time aging monitoring for IGBT modules using case temperature[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2):1168-1178.
doi: 10.1109/TIE.2015.2497665 |
[7] | 李亚萍. IGBT 模块加速老化及老化特征参量研究[D]. 重庆: 重庆大学, 2018. |
LI Yaping. Study on accelerated aging and aging characteristic parameters of IGBT module[D]. Chongqing: Chongqing University, 2018. | |
[8] | HANIF A, DAS S, KHAN F. Active power cycling and condition monitoring of IGBT power modules using reflectometry[C]// 2018 IEEE Applied Power Electronics Conference and Exposition (APEC),IEEE, 2018:2827-2833. |
[9] | CHOI U M, BLAABJERG F, IANNUZZO F. Advanced power cycler with intelligent monitoring strategy of IGBT module under test[J]. Microelectronics Reliability, 2017,76-77:522-526. |
[10] |
BAKER N, DUPONT L, MUNK-NIELSEN S, et al. IR camera validation of IGBT junction temperature measurement via peak gate current[J]. IEEE Transactions on Power Electronics, 2017, 32(4):3099-3111.
doi: 10.1109/TPEL.2016.2573761 |
[11] | 江泽申. 压接式IGBT器件功率循环试验及寿命预测[D]. 重庆: 重庆大学, 2018. |
JIANG Zeshen. Power cycling test and lifetime modeling of press-pack IGBT[D]. Chongqing: Chongqing University, 2018. | |
[12] | 毛培烨. IGBT模块结温测量与预测研究[D]. 天津: 天津理工大学, 2021. |
MAO Peiye. Research on junction temperature measurement and prediction of IGBT module[D]. Tianjin: Tianjin University of Technology, 2021. | |
[13] | 邓二平, 张经纬, 李尧圣, 等. 焊接式IGBT模块与压接型IGBT器件可靠性差异分析[J]. 半导体技术, 2016, 41(11):801-810,815. |
DENG Erping, ZHANG Jingwei, LI Yaosheng, et al. Reliability difference analysis between welded IGBT module and crimped IGBT device[J]. Semiconductor Technology, 2016, 41(11):801-810,815. | |
[14] | 曾东, 孙林, 周雒维, 等. 基于加速老化试验IGBT性能退化特征参量的可靠性评估[J]. 电工电能新技术, 2019(7):20-28. |
ZENG Dong, SUN Lin, ZHOU Luowei, et al. Reliability evaluation of IGBT based on performance degradation characteristic parameters of accelerated aging test[J]. New Technology of Electrical Engineering and Energy, 2019(7):20-28. | |
[15] | 闫佳轩. IGBT加速老化实验平台研制[D]. 西安: 西安理工大学, 2021. |
YAN Jiaxuan. Development of IGBT accelerated aging experimental platform[D]. Xi’an: Xi’an University of Technology, 2021. | |
[16] | 李洁, 赖伟, 汪纪锋, 等. IGBT 的加速老化试验方法研究[J]. 电力电子技术, 2018(8):73-76. |
LI Jie, LAI Wei, WANG Jifeng, et al. Research on accelerated aging test method of IGBT[J]. Power Electronics, 2018(8):73-76. | |
[17] | 秦潇峰. 1700V IGBT关键技术与优化设计研究[D]. 成都: 电子科技大学, 2021. |
QIN Xiaofeng. Research on key technology and optimization design of 1700 V IGBT[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
[18] | 孟繁煦. 大功率IGBT模块直流加速老化平台的研制[D]. 杭州: 浙江大学, 2019. |
MENG Fanxu. Development of DC accelerated aging platform for high power IGBT module[D]. Hangzhou: Zhejiang University, 2019. | |
[19] |
JI B, PICKERT V, CAO W, et al. In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives[J]. IEEE Transactions on Power Electronics, 2013, 28(12):5568-5577.
doi: 10.1109/TPEL.2013.2251358 |
[20] | GHIMIRE P, VEGA A R de, BECZKOWSKI S, et al. An online Vce measurement and temperature estimation method for high power IGBT module in normal PWM operation[C]// 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), 2014:2850-2855. |
[21] | GHIMIRE P, DE VEGA A R, BECZKOWSKI S, et al. Improving power converter reliability:Online monitoring of high-power IGBT modules[J]. IEEE Industrial Electronics Magazine,Institute of Electrical and Electronics Engineers Inc., 2014, 8(3):40-50. |
[22] | 刘宾礼, 肖飞, 罗毅飞, 等. 基于集电极漏电流的IGBT健康状态监测方法研究[J]. 电工技术学报, 2017, 32(16):186-189. |
LIU Binli, XIAO Fei, LUO Yifei, et al. Research on IGBT health monitoring method based on collector leakage current[J]. Transactions of China Electrotechnical Society, 2017, 32(16):186-189. | |
[23] |
HYUNSEOK O, HAN B, Mccluskey P, et al. Physics-of-failure, condition monitoring,and prognostics of insulated gate bipolar transistor modules:A review[J]. IEEE Transactions on Power Electronics, 2015, 30(5):2413-2426.
doi: 10.1109/TPEL.2014.2346485 |
[24] | 陈杰, 邓二平, 赵雨山, 等. 高压大功率器件结温在线测量方法综述[J]. 中国电机工程学报, 2019, 39(22):6677-6688. |
CHEN Jie, DENG Erping, ZHAO Yushan, et al. Review of on-line junction temperature measurement methods of high voltage power electronics[J]. Proceedings of the CSEE, 2019, 39(22):6677-6688. | |
[25] | 刘宾礼, 刘德志, 唐勇, 等. 基于IGBT栅极疲劳机理的阈值电压可靠性模型研究[J]. 电力电子技术, 2015, 49(4):36-38,60. |
LIU Binli, LIU Dezhi, TANG Yong, et al. Research on threshold voltage reliability model based on IGBT gate fatigue mechanism[J]. Power Electronics, 2015, 49(4):36-38,60. | |
[26] | 王晨苑, 何怡刚, 王传坤, 等. 高压多芯片并联IGBT模块故障监测方法[J]. 电子测量与仪器学报, 2020, 34(10):98-106. |
WANG Chenyuan, HE Yigang, WANG Chuankun, et al. Method for fault monitoring of high-voltage multi-chip parallel IGBT module[J]. Journal of Electronic Measurement and Instrument, 2020, 34(10):98-106. |
[1] | Lü Xuemei, WANG Xi, LUO Mingsheng. Analysis of Thermal-mechanical Coupling Behavior of Brake Disc of High Speed Trains Considering Thermal Contact Resistance [J]. Journal of Mechanical Engineering, 2021, 57(22): 296-304. |
[2] | MENG Qingyu, LIU Yang, YAN Xinxin, MA Yaxin, LI Yanzhen. Research on Thermal Distribution Characteristics of Motorized Spindle System Based on Fractal Theory [J]. Journal of Mechanical Engineering, 2021, 57(13): 63-69. |
[3] | Zihao Zhao, Lin Liang, Lubin Han. Study of Pressure Balance for Press-Pack IGBTs and Its Influence on Temperature Distribution [J]. Chinese Journal of Electrical Engineering, 2018, 4(4): 57-63. |
[4] | LI Hongchuan, JI Xianbing, ZHENG Xiaohuan, YANG Wolong, XU Jinliang. Study on Heat Transfer Properties of Flat Heat Pipe with Conical Capillary Wicks [J]. Journal of Mechanical Engineering, 2015, 51(24): 132-138. |
[5] | SU Gaohui; YANG Zichun; SUN Fengrui. Molecular Dynamics Simulation of Thermal Conductivity of Primary Particle of Silica Aerogel [J]. , 2014, 50(22): 178-185. |
[6] | QIAO Tieliang;CUI Xiaoyu;HAN Hua;LI Zhihua. Research of the Heat-transfer Performance on Methanol/Acetone Oscillating Heat Pipe [J]. , 2014, 50(18): 155-161. |
[7] | HAO Xiaohong;HU Zhengguang;HOU Qiong;FANG Ying;LI Xuekang;PENG Bei. Optimization of Serpentine Channel Heat Sink Based on Multi-objective Genetic Algorithm [J]. , 2013, 49(10): 151-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||