Journal of Electrical Engineering ›› 2024, Vol. 19 ›› Issue (1): 87-96.doi: 10.11985/2024.01.009
Previous Articles Next Articles
LI Yujia1(), OUYANG Quan1(
), LIU Haoyi1, ZHU Mingye2, WANG Zhisheng1
Received:
2023-10-08
Revised:
2023-11-28
Online:
2024-03-25
Published:
2024-04-25
CLC Number:
LI Yujia, OUYANG Quan, LIU Haoyi, ZHU Mingye, WANG Zhisheng. Vehicle Battery Capacity Prediction Based on Hybrid Model of Support Vector Machine and Improved Gaussian Process[J]. Journal of Electrical Engineering, 2024, 19(1): 87-96.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
数据集 | 模型 | RMSE | MAE | MAPE(%) |
---|---|---|---|---|
实车1 | 混合模型 | 0.042 4 | 0.031 4 | 0.028 1 |
SVM | 0.147 8 | 0.116 0 | 0.104 4 | |
LSTM | 0.421 3 | 0.398 5 | 0.357 8 | |
BP | 0.076 7 | 0.066 4 | 0.064 5 | |
实车2 | 混合模型 | 0.048 4 | 0.032 3 | 0.031 0 |
SVM | 0.100 9 | 0.083 9 | 0.081 0 | |
LSTM | 0.198 9 | 0.161 0 | 0.155 5 | |
BP | 0.064 4 | 0.051 9 | 0.034 6 | |
实车3 | 混合模型 | 0.020 3 | 0.015 4 | 0.014 9 |
SVM | 0.075 7 | 0.056 9 | 0.055 2 | |
LSTM | 0.019 8 | 0.016 7 | 0.016 2 | |
BP | 0.098 5 | 0.072 0 | 0.057 3 |
"
预测步长 | 方法 | 实车1 | 实车2 | 实车3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | MAPE(%) | RMSE | MAE | MAPE(%) | RMSE | MAE | MAPE(%) | ||||
三步 | 融合方法 | 0.084 2 | 0.061 3 | 0.054 9 | 0.086 0 | 0.060 3 | 0.058 0 | 0.040 3 | 0.031 0 | 0.291 4 | ||
SVM | 0.169 8 | 0.133 9 | 0.120 5 | 0.124 9 | 0.100 1 | 0.096 7 | 0.103 7 | 0.076 7 | 0.335 7 | |||
LSTM | 0.390 7 | 0.313 7 | 0.280 0 | 0.337 5 | 0.288 7 | 0.278 6 | 0.071 1 | 0.059 4 | 0.057 6 | |||
BP | 0.128 5 | 0.113 7 | 0.119 1 | 0.164 2 | 0.136 3 | 0.105 3 | 0.130 5 | 0.104 0 | 0.096 2 | |||
六步 | 融合方法 | 0.148 5 | 0.094 6 | 0.084 7 | 0.181 4 | 0.117 2 | 0.115 2 | 0.076 2 | 0.055 6 | 0.053 9 | ||
SVM | 0.136 8 | 0.113 2 | 0.101 7 | 0.168 3 | 0.136 2 | 0.131 6 | 0.107 8 | 0.080 5 | 0.078 1 | |||
LSTM | 0.355 5 | 0.325 6 | 0.291 2 | 0.523 2 | 0.448 1 | 0.432 4 | 0.147 3 | 0.117 4 | 0.113 9 | |||
BP | 0.169 2 | 0.149 1 | 0.168 8 | 0.205 7 | 0.173 3 | 0.121 8 | 0.151 0 | 0.121 2 | 0.113 4 |
"
数据集 | 模型 | RMSE | MAE | MAPE(%) |
---|---|---|---|---|
实车1 | 混合模型 | 0.042 6 | 0.032 3 | 0.028 8 |
SVM | 1.097 1 | 0.055 8 | 0.768 9 | |
LSTM | 0.319 8 | 0.251 1 | 0.225 6 | |
BP | 0.105 6 | 0.085 8 | 0.065 1 | |
实车2 | 混合模型 | 0.050 5 | 0.033 0 | 0.085 8 |
SVM | 0.370 7 | 0.309 1 | 0.297 8 | |
LSTM | 0.613 2 | 0.583 5 | 0.559 0 | |
BP | 0.106 6 | 0.086 0 | 0.071 0 | |
实车3 | 混合模型 | 0.018 9 | 0.014 3 | 0.013 9 |
SVM | 0.088 1 | 0.074 3 | 0.072 1 | |
LSTM | 0.098 9 | 0.078 6 | 0.076 0 | |
BP | 0.161 0 | 0.117 9 | 0.114 3 |
[1] | 赵振利. 电动汽车私桩共享充电定价模型及效益分配研究[D]. 北京: 华北电力大学, 2020. |
ZHAO Zhenli. Study on pricing model and benefit distribution of charging pile sharing for electric vehicles[D]. Beijing: North China Electric Power University, 2020. | |
[2] |
KIM I L S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE Transactions on Power Electronics, 2009, 25(4):1013-1022.
doi: 10.1109/TPEL.2009.2034966 |
[3] | 耿星, 王友仁. 蓄电池SOH估算方法研究综述[J]. 机械制造与自动化, 2019, 48(1):210-212. |
GENG Xing, WANG Youren. Review of SOH estimation method for battery[J]. Mechanical Manufacturing and Automation, 2019, 48(1):210-212. | |
[4] |
HASHEMI S R, MAHAJAN A M, FARHAD S. Online estimation of battery model parameters and state of health in electric and hybrid aircraft application[J]. Energy, 2021, 229(1):120699.
doi: 10.1016/j.energy.2021.120699 |
[5] |
ZHOU L, YANG Z, LI D, et al. State-of-health estimation for LiFePO4 battery system on real-world electric vehicles considering aging stage[J]. IEEE Transactions on Transportation Electrification, 2021, 8(2):1724-1733.
doi: 10.1109/TTE.2021.3129497 |
[6] | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1):107-113,327. |
ZHOU Di, SONG Xianhua, LU Wenbin, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1):107-113,327. | |
[7] | DRISCOLL L, De La TORRE S, GOMEZ-RUIZ J A. Feature-based lithium-ion battery state of health estimation with artificial neural networks[J]. Journal of Energy Storage, 2022,50:104584. |
[8] | DUAN W, SONG S, XIAO F, et al. Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter[J]. Journal of Energy Storage, 2023,65:107322. |
[9] |
张新锋, 姚蒙蒙, 王钟毅, 等. 基于ACO-BP神经网络的锂离子电池容量衰退预测[J]. 储能科学与技术, 2020, 9(1):138-144.
doi: 10.19799/j.cnki.2095-4239.2019.0190 |
ZHANG Xinfeng, YAO Mengmeng, WANG Zhongyi, et al. Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm[J]. Energy Storage Science and Technology, 2020, 9(1):138-144.
doi: 10.19799/j.cnki.2095-4239.2019.0190 |
|
[10] | CHENG G, WANG X, HE Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network[J]. Energy, 2021,232:121022. |
[11] | JIA J, LIANG J, SHI Y, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators[J]. Energy, 2020, 13(2):375. |
[12] | 范智伟, 乔丹, 崔海港. 锂离子电池充放电倍率对容量衰减影响研究[J]. 电源技术, 2020, 44(3):325-329. |
FAN Zhiwei, QIAO Dan, CUI Haigang. Research on the effect of charge and discharge rates on capacity fading of lithium-ion batteries[J]. Journal of Power Sources, 2020, 44(3):325-329. | |
[13] | 武佳卉, 邵振国, 杨少华, 等. 数据清洗在新能源功率预测中的研究综述和展望[J]. 电气技术, 2020, 21(11):1-6. |
WU Jiahui, SHAO Zhenguo, YANG Shaohua, et al. Review and prospect of data cleaning in renewable energy power prediction[J]. Electrical Engineering, 2020, 21(11):1-6. | |
[14] | 胡杰, 何陈, 朱雪玲, 等. 基于实车数据的电动汽车电池剩余使用寿命预测[J]. 交通运输系统工程与信息, 2022, 22(1):292-300. |
HU Jie, HE Chen, ZHU Xueling, et al. Predicting remaining useful life of electric vehicle battery based on real vehicle data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1):292-300. | |
[15] | 杨心月, 荆博, 梅志刚, 等. 风电机组功率异常数据剔除方法研究[J/OL]. 电测与仪表:1-9[2024-01-25]. http://kns.cnki.net/kcms/detail/23.1202.TH.20221025.1809.006.html. |
YANG Xinyue, JING Bo, MEI Zhigang, et al. Methods for elimination of abnormal power data of wind turbine[J/OL]. Electrical Measurement and Instrumentation:1-9[2024-01-25]. http://kns.cnki.net/kcms/detail/23.1202.TH.20221025.1809.006.html. | |
[16] | LI Q, LI R, JI K, et al. Kalman filter and its application[C]// 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS),Tianjin,China,2015: 74-77. |
[17] |
WU Zhaohua, HUANG N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
doi: 10.1142/S1793536909000047 |
[18] | OTCHERE D A, GANAT T O A, GHOLAMI R, et al. Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties:Comparative analysis of ANN and SVM models[J]. Journal of Petroleum Science and Engineering, 2021,200:108182. |
[19] |
LI L, WANG P, CHAO K-H, et al. Remaining useful life prediction for lithium-ion batteries based on Gaussian processes mixture[J]. PloS One, 2016, 11(9):e0163004.
doi: 10.1371/journal.pone.0163004 |
[20] |
ZHU M, OUYANG Q, WAN Y, et al. Remaining useful life prediction of lithium-ion batteries:A hybrid approach of grey-Markov chain model and improved Gaussian process[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1):143-153.
doi: 10.1109/JESTPE.2021.3098378 |
[1] | WANG Limeng, WANG Shuo. Partial Discharge in GIS Diagnosis Method Based on EWT-FE Analysis and Improved SVM Algorithm [J]. Journal of Electrical Engineering, 2024, 19(1): 371-381. |
[2] | LI Hua, ZHU Yimin, MA Haijun, DING Jibo, CHU Tianxin, ZHANG Wenhai. Least Squares Support Vector Machine Based Incipient Fault Identification in Non-solidly Grounding System [J]. Journal of Electrical Engineering, 2023, 18(3): 297-306. |
[3] | CHEN Nuo, LÜ Ganyun, YE Jiaxing. Recognition of Complex PQ Disturbances Based on SVM Cascaded Decision Tree [J]. Journal of Electrical Engineering, 2023, 18(2): 149-156. |
[4] | GUO Rui, ZHANG Yinhao, NIU Wenwen, LUO Xiongshuai, CAI Wei, WANG Jianwei, WANG Yuefeng, ZHAO Jingyi. Study on Health Status Classification of Variable Gear Pump Based on GLCT and CPA-SVM [J]. Journal of Mechanical Engineering, 2023, 59(14): 310-319. |
[5] | ZHOU Ce, BAI Bin, YE Nan. Reliability Prediction of Engineering System Based on Adaptive Particle Swarm Optimization Support Vector Regression [J]. Journal of Mechanical Engineering, 2023, 59(14): 328-338. |
[6] | ZHOU Kai, CAO Lin, HU Zhijian, YAN Lixiong, BI Ruyu, DENG Ke, LI Yulei. Anti-error Method of Intelligent Substation Secondary System Based on Decision Tree and Support Vector Machine [J]. Journal of Electrical Engineering, 2023, 18(1): 118-125. |
[7] | JIA Hanbing, LIU Peng, ZHANG Lei, WANG Zhenpo. Lane-changing Decision Model Development by Combining Rules Abstract and Machine Learning Technique [J]. Journal of Mechanical Engineering, 2022, 58(4): 212-221. |
[8] | LU Nan, OUYANG Quan, HUANG Lianghui, WANG Zhisheng. Capacity Prediction of Lithium-ion Batteries Based on Multi-task LSTM with Attention Mechanism [J]. Journal of Electrical Engineering, 2022, 17(4): 41-50. |
[9] | XU Binxiang, ZHENG Linfeng, HUANG Yiheng, XIAO Zhineng, WANG Xinyue. Fast Estimating the State of Health of Lithium-ion Batteries Based on Improved Least Squares Support Vector Machine [J]. Journal of Electrical Engineering, 2022, 17(4): 11-19. |
[10] | ZENG Dezheng, Lü Jiliang, QU Shengguan, YIN Peng, LI Xiaoqiang. Research on Gait Detection and Recognition of Lower Limb Exoskeleton Based on SVMBP [J]. Journal of Mechanical Engineering, 2022, 58(12): 29-38. |
[11] | LIU Jianhua, HUANG Hao, JIN Peng, LIU Shaoli. Tube Measurement Method Based on Adaptive Primitives [J]. Journal of Mechanical Engineering, 2021, 57(22): 71-79. |
[12] | SHU Xing, LIU Yonggang, SHEN Jiangwei, CHEN Zheng. Capacity Prediction for Lithium-ion Batteries Based on Improved Least Squares Support Vector Machine and Box-Cox Transformation [J]. Journal of Mechanical Engineering, 2021, 57(14): 118-128. |
[13] | ZHOU Cheng, DENG Fei, LIU Yao, LIU Xiucheng, CHEN Honglei, LIU Zenghua. Identification of Corrosion Damage Degree of Guided Wave Bend Pipe Based on Neural Network and Support Vector Machine [J]. Journal of Mechanical Engineering, 2021, 57(12): 136-144. |
[14] | LIN Xinghua, WU Jianguo, WANG Xiaoming, ZHANG Minge, LIU Haitao. Research on Underwater Triangle Source Sensing Method Based on the Lateral Line Sensing Mechanism [J]. Journal of Mechanical Engineering, 2020, 56(12): 240-248. |
[15] | PEI Hong, HU Changhua, SI Xiaosheng, ZHANG Jianxun, PANG Zhenan, ZHANG Peng. Review of Machine Learning Based Remaining Useful Life Prediction Methods for Equipment [J]. Journal of Mechanical Engineering, 2019, 55(8): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||