Journal of Electrical Engineering ›› 2024, Vol. 19 ›› Issue (1): 23-32.doi: 10.11985/2024.01.003
Previous Articles Next Articles
JIN Yingai1,2(), YU Wenbin1,2(
), MA Chunqiang1,2(
)
Received:
2023-10-08
Revised:
2023-11-20
Online:
2024-03-25
Published:
2024-04-25
CLC Number:
JIN Yingai, YU Wenbin, MA Chunqiang. Review of Research on Fast Charging Strategies for New Energy Vehicle Energy Storage Systems[J]. Journal of Electrical Engineering, 2024, 19(1): 23-32.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
充电方式 | 优点 | 缺点 |
---|---|---|
恒流充电 | 高效快速充电,控制简单 | 初期电流较小导致充电时间长、中期电流大能耗高和充电效率低下,后期容易过充,影响电池寿命 |
恒压充电 | 充电过程更接近电池可接受曲线,控制简单,成本低 | 充电时间长,充电初期电流较大,影响电池使用寿命 |
恒流恒压充电 | 结合了恒流充电和恒压充电的优点,结构简单,成本较低 | 未能消除极化现象,影响充电效果 |
脉冲充电 | 充电速度快,温度变化小,对电池寿命影响小 | 需要一个有限流功能的电源,增加成本 |
变电压间歇充电法 | 加快充电过程,缩短充电时间 | 电路复杂,造价高,一般在大功率 |
Reflex快速充电法 | 可以很大程度上解决极化现象,加快充电速度,充电速度块,电池温度变化小 | 反向充电影响电池寿命 |
智能充电法 | 充电效率高,电池寿命长 | 控制策略复杂,成本较高 |
[1] | ANDWARI A M, PESIRIDIS A, RAJOO S, et al. A review of battery electric vehicle technology and readiness levels[J]. Renewable and Sustainable Energy Reviews, 2017,78:414-430. |
[2] | 陈莹. 电动车用锂离子电池快速充电技术研究[D]. 无锡: 江南大学, 2018. |
CHEN Ying. Research on fast charging technology of lithium-ion batteries for electric vehicles[D]. Wuxi: Jiangnan University, 2018. | |
[3] |
唐鑫, 欧阳权, 黄俍卉, 等. 基于深度强化学习的锂电池快速充电控制策略[J]. 机械工程学报, 2022, 58(22):69-78.
doi: 10.3901/JME.2022.22.069 |
TANG Xin, OUYANG Quan, HUANG Lianghui, et al. Deep reinforcement learning based fast charging control strategy for lithium batteries[J]. Journal of Mechanical Engineering, 2022, 58(22):69-78.
doi: 10.3901/JME.2022.22.069 |
|
[4] |
王莉, 何向明, 胡坚耀, 等. 锂电池电动车极快速充电的科学与工程问题[J]. 储能科学与技术, 2018, 7(6):987-993.
doi: 10.12028/j.issn.2095-4239.2018.0110 |
WANG Li, HE Xiangming, HU Jianyao, et al. Scientific and engineering issues of extreme fast charging of lithium battery electric vehicles[J]. Energy Storage Science and Technology, 2018, 7(6):987-993.
doi: 10.12028/j.issn.2095-4239.2018.0110 |
|
[5] |
LIN C, DENG D, KUO C. Optimal charging control of energy storage and electric vehicle of an individual in the internet of energy with energy trading[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6):2570-2578.
doi: 10.1109/TII.2017.2782845 |
[6] |
OUYANG Quan, CHEN Jian, ZHENG Jian, et al. Optimal multi-objective charging for lithium-ion battery packs:A hierarchical control approach[J]. IEEE Transactions on Industrial Informatics, 2018, 11(10):1-11.
doi: 10.1109/TII.2015.2475695 |
[7] |
GORRETA S, PONS-NIN J, BLOKHINA E, et al. A second-order delta-sigma control of dielectric charge for contactless capacitive MEMS[J]. Journal of Microelectromechanical System, 2015, 24(2):259-261.
doi: 10.1109/JMEMS.2015.2402394 |
[8] | 张学, 裴玮, 邓卫, 等. 电网电压不平衡情况下三相并联型PWM整流器的控制策略[J]. 电网技术, 2018, 42(1):330-339. |
ZHANG Xue, PEI Wei, DENG Wei, et al. Control strategy of three-phase shunt-type PWM rectifier under grid voltage unbalance[J]. Power System Technology, 2018, 42(1):330-339. | |
[9] | 吴振兴, 邹云屏, 张哲宇. 单相PWM整流器的输入电流自适应预测控制器[J]. 电工技术学报, 2010, 25(2):73-79. |
WU Zhenxing, ZOU Yunping, ZHANG Zheyu. Adaptive prediction controller for input current of single-phase PWM rectifier[J]. Transactions of China Electrotechnical Society, 2010, 25(2):73-79. | |
[10] | ANDREA D. Battery management systems for large lithium-ion battery packs[M]. Fitchburg: Artech House, 2010. |
[11] | 刘佳威. 锂离子电池安全快速多目标优化充电策略研究[D]. 济南: 山东大学, 2021. |
LIU Jiawei. Research on safe and fast multi-objective optimized charging strategy for lithium-ion batteries[D]. Jinan: Shandong University, 2021. | |
[12] | 徐磊. 动力锂电池充电技术研究[D]. 太原: 太原科技大学, 2014. |
XU Lei. Research on charging technology of power lithium battery[D]. Taiyuan: Taiyuan University of Science and Technology, 2014. | |
[13] |
ZHANG S S. The effect of the charging protocol on the cycle life of a Li-ion battery[J]. Journal of Power Sources, 2006, 161(2):1385-1391.
doi: 10.1016/j.jpowsour.2006.06.040 |
[14] | LUO Y F, LIU Y H, WANG S C. Search for an optimal multistage charging pattern for lithium-ion batteries using the Taguchi approach[C]// TENCON 2009-2009 IEEE Region 10 Conference,January 23-26,2009,Singapore. IEEE, 2009:1-5. |
[15] |
KHAN A B, CHOI W. Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries[J]. IEEE Transactions on Energy Conversion, 2018, 33(3):1132-1140.
doi: 10.1109/TEC.60 |
[16] | LI Yunjian, LI Kuining, XIE Yi, et al. Optimized charging of lithium-ion battery for electric vehicles:Adaptive multistage constant current-constant voltage charging strategy[J]. Renewable Energy, 2020,146:2688-2699. |
[17] | 姚雷, 王震坡. 锂离子电池极化电压特性分析[J]. 北京理工大学学报, 2014, 34(9):912-916. |
YAO Lei, WANG Zhenpo. Characterization of polarization voltage of lithium-ion battery[J]. Journal of Beijing Institute of Technology, 2014, 34(9):912-916. | |
[18] |
JIANG Jiuchun, LIU Qiujiang, ZHANG Caiping, et al. Evaluation of acceptable charging current of power Li-ion batteries based on polarization characteristics[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12):6844-6851.
doi: 10.1109/TIE.41 |
[19] | ZHANG Caiping, JIANG Jiuchun, GAO Yang, et al. Charging optimization in lithium-ion batteries based on temperature rise and change time[J]. Applied Energy, 2017,194:569-577. |
[20] |
DOYLE M, NEWMAN J. Modeling of galvanostatic charge and dischargr of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 140(6):1526.
doi: 10.1149/1.2221597 |
[21] | CHU Zhengyu, FENG Xuning, LU Languang, et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model[J]. Applied Energy, 2017,204:1240-1250. |
[22] |
LIU Jinhai, CHU Zhengyu, LI Haili, et al. Lithium- plating-free fast charging of large-format lithium-ion batteries with reference electrodes[J]. International Journal of Energy Research, 2021, 45(5): 7918-7932.
doi: 10.1002/er.v45.5 |
[23] | SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019,436:226835. |
[24] | YIN Y, HU Y, CHOE S Y, et al. New fast charging method of lithium-ion batteries based on a reduced order electrochemical model considering side reaction[J]. Journal of Power Sources, 2019,423:367-379. |
[25] |
ZOU Changfu, HU Xiaosong, WEI Zhongbao, et al. Electrochemical estimation and control for lithium-ion battery health-aware fast charging[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8):6635-6645.
doi: 10.1109/TIE.41 |
[26] |
WANG S C, LIU Y H. A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2014, 62(5):2983-2993.
doi: 10.1109/TIE.41 |
[27] | ABDOLLAHI A, HAN X, AVVARI G V, et al. Optimal battery charging,Part I:Minimizing time-to-charge,energy loss,and temperature rise for OCV-resistance battery model[J]. Journal of Power Sources, 2016,303:388-398. |
[28] |
OUYANG Q, WANG Z, LIU K, et al. Optimal charging control for lithium-ion battery packs:A distributed average tracking approach[J]. IEEE Transactions on Industrial Informatics, 2019, 16(5):3430-3438.
doi: 10.1109/TII.9424 |
[29] |
LIU K, ZOU C, LI K, et al. Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12):5463-5474.
doi: 10.1109/TII.2018.2866493 |
[30] |
OUYANG Q, XU G, FANG H, et al. Fast charging control for battery packs with combined optimization of charger and equalizers[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11):11076-11086.
doi: 10.1109/TIE.2020.3029464 |
[31] | 杨帆, 乔艳龙, 甘德刚, 等. 不同充电模式对锂离子电池极化特性影响[J]. 电工技术学报, 2017, 32(12):171-178. |
YANG Fan, QIAO Yanlong, GAN Degang, et al. Effects of different charging modes on the polarization characteristics of lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2017, 32(12):171-178. | |
[32] | 孙维毅. 锂离子动力电池充电特性及优化控制技术研究[D]. 长春: 吉林大学, 2018. |
SUN Weiyi. Research on charging characteristics and optimization control technology of lithium-ion power battery[D]. Changchun: Jilin University, 2018. | |
[33] | 龚浩然. 电动汽车锂离子动力电池优化充电策略研究[D]. 西安: 长安大学, 2019. |
GONG Haoran. Research on optimized charging strategy of lithium-ion power battery for electric vehicles[D]. Xi’an: Chang’an University, 2019. | |
[34] |
ZHU Gaolong, ZHAO Chenzi, HUANG Jiaqi, et al. Fast charging lithium batteries:Recent progress and future prospects[J]. Small, 2019, 15(15):1805389.
doi: 10.1002/smll.v15.15 |
[35] | CHANDRASEKARAN R. Quantification of bottlenecks to fast charging of lithium-ion-insertion cells for electric vehicles[J]. Journal of Power Sources, 2014,271:622-632. |
[36] |
CAI Wenlong, YAO Yuxing, ZHU Gaolong, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12):3806-3833.
doi: 10.1039/c9cs00728h pmid: 32478786 |
[37] | XU Meng, WANG Rui, ZHAO Peng. Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal- capacity fade coupled model[J]. Journal of Power Sources, 2019,438:227015. |
[38] | LEGRAND N, KNOSP B, DESPREZ P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. Journal of Power Sources, 2014,245:208-216. |
[39] |
LI S, WANG K, ZHANG G, et al. Fast charging anode materials for lithium-ion batteries:Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23):2200796.
doi: 10.1002/adfm.v32.23 |
[40] | RANGOM Y, DUIGNAN T T, ZHAO X S. Lithium-ion transport behavior in thin-film graphite electrodes with SEI layers formed at different current densities[J]. ACS Applied Materials & Interfaces, 2021, 13(36):42662-42669. |
[41] |
LI G. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(7):2002891.
doi: 10.1002/aenm.v11.7 |
[42] | ZHANG Z, ZHAO D, XU Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. The Chemical Record, 2022, 22(10):e202200127. |
[43] | LI L, ZHANG D, DENG J, et al. Carbon-based materials for fast charging lithium-ion batteries[J]. Carbon, 2021,183:721-734. |
[44] | 王灿, 马盼, 祝国梁, 等. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1):59-67. |
WANG Can, MA Pan, ZHU Guoliang, et al. Current status and prospects of long-life graphite electrodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1):59-67.
doi: 10.19799/j.cnki.2095-4239.2020.0330 |
|
[45] |
YAZAMI R, TOUZAIN P. A reversible graphite-lithium negative electrode for electrochemical generators[J]. Journal of Power Sources, 1983, 9(3):365-371.
doi: 10.1016/0378-7753(83)87040-2 |
[46] |
XUE Y, ZHANG Q, WANG W, et al. Opening two-dimensional materials for energy conversion and storage:A concept[J]. Advanced Energy Materials, 2017, 7(19):1602684.
doi: 10.1002/aenm.v7.19 |
[47] |
KIM T H, JEON E K, KO Y, et al. Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast[J]. Journal of Materials Chemistry A, 2014, 2(20):7600-7605.
doi: 10.1039/C3TA15360F |
[48] | CHENG Q, YUGE R, NAKAHARA K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources, 2015,284:258-263. |
[49] | KIM D S, KIM Y E, KIM H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries[J]. Journal of Power Sources, 2019,422:18-24. |
[50] |
WANG Shitong, QUAN Wei, ZHU Zhi, et al. Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries[J]. Nature Communications, 2017, 8(1):627.
doi: 10.1038/s41467-017-00574-9 pmid: 28931813 |
[51] |
SHEN Yifen, QIAN Jiangfeng, YANG Hanxi, et al. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries[J]. Small, 2020, 16(7):1907602.
doi: 10.1002/smll.v16.7 |
[52] |
YAN Xiao, LI Yanjuan, LI Malin, et al. Ultrafast lithium storage in TiO2-bronze nanowires/N-doped graphene nanocomposites[J]. Journal of Materials Chemistry A, 2015, 3(8):4180-4187.
doi: 10.1039/C4TA06361A |
[53] | XUE W, GAO R, SHI Z, et al. Stabilizing electrode-electrolyte interfaces to realize high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte[J]. Energy & Environmental Science, 2021, 14(11):6030-6040. |
[54] |
JIN X, HAN Y, ZHANG Z, et al. Mesoporous single- crystal lithium titanate enabling fast-charging Li-ion batteries[J]. Advanced Materials, 2022, 34(18):2109356.
doi: 10.1002/adma.v34.18 |
[55] | 安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41(1):22-42. |
AN Fuqiang, ZHAO Hongliang, CHENG Zhi, et al. Development status and research progress of lithium-ion batteries for pure electric vehicles[J]. Journal of Engineering Science, 2019, 41(1):22-42. | |
[56] |
YAN Zichao, JIN Xiao, LAI Weihong, et al. Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries[J]. Nature Communications, 2019, 10(1):4793.
doi: 10.1038/s41467-019-11600-3 pmid: 31641115 |
[57] | HE Jingjing, ZHANG Yibo, ZHANG Yingjie, et al. Layered over-lithiated oxide coating for reviving spent LiCoO2 cathode for stable high-voltage lithium-ion battery[J]. Journal of Alloys and Compounds, 2022,908:164576. |
[58] | YI Tingfeng, FANG Zikui, XIE Ying, et al. Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery[J]. Electrochimica Acta, 2014,147:250-256. |
[59] |
WANG C, YUAN X, TAN H, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance[J]. Coatings, 2021, 11(9):1137.
doi: 10.3390/coatings11091137 |
[60] |
OU J, YANG L, JIN F, et al. High performance of LiFePO4 with nitrogen-doped carbon layers for lithium ion batteries[J]. Advanced Powder Technology, 2020, 31(3):1220-1228.
doi: 10.1016/j.apt.2019.12.044 |
[61] |
JIANG G, LIU J, HE J, et al. Hydrofluoric acid-removable additive optimizing electrode electrolyte interphases with Li+ conductive moieties for 4.5 V lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(12):2214422.
doi: 10.1002/adfm.v33.12 |
[62] | JIANG G, LIU J, WANG Z, et al. Stable non-flammable phosphate electrolyte for lithium metal batteries via solvation regulation by the additive[J]. Advanced Functional Materials,2023:2300629. |
[1] | MA Junwei, HUO Meiru, ZHAO Min, DU Feng, JING Feng, FENG Yu. Energy Consumption Prediction Method for Electric Vehicles by Integrating Charging Behavior with Data-driven Method [J]. Journal of Electrical Engineering, 2024, 19(1): 97-105. |
[2] | ZHANG Li-peng, WANG Zi-jian, REN Zhang-an, FAN Xiao-jian. Innovation Design and Application of Speed-increasing Clutch for Hybrid Electric Vehicle [J]. Journal of Mechanical Engineering, 2023, 59(8): 253-263. |
[3] | YANG Xulai, YUAN Shuaishuai, YANG Wenjing, LIU Chuang, YANG Shichun. Research Progress on Energy Density of Li-ion Batteries for Evs [J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254. |
[4] | WU Jianyang, WANG Zhenpo, ZHANG Lei, DING Xiaolin. Coordination Stability Control Strategy for Four-wheel-independent-actuated Electric Vehicles [J]. Journal of Mechanical Engineering, 2023, 59(4): 163-172. |
[5] | WANG Feng, ZHANG Jian, XU Xing, WANG Chunhai, QUE Hongbo, GAO Yang. Transient Torsional Vibration Characteristic Analysis and Active Suppression of PHEV with Planetary Coupled Transmission System during Mode Transition Process [J]. Journal of Mechanical Engineering, 2023, 59(4): 173-189. |
[6] | GAO Fengyang, ZHANG Haoran, WANG Wenxiang, LI Mingming. Energy Management Strategy of Modern Tram Based on the Combination of Rule Control and Driving Conditions [J]. Journal of Mechanical Engineering, 2023, 59(4): 221-231. |
[7] | ZHANG Lei, XU Tongliang, LI Siyang, CHENG Shuhui, DING Xiaolin, WANG Zhenpo, SUN Fengchun. Overview on Chassis Coordinated Control for Full X-by-wire Distributed Drive Electric Vehicles [J]. Journal of Mechanical Engineering, 2023, 59(20): 261-280. |
[8] | Jyoti Gupta, Rakesh Maurya, Sabha Raj Arya. Designing an On-board Charger to Efficiently Charge Multiple Electric Vehicles [J]. Chinese Journal of Electrical Engineering, 2023, 9(2): 38-56. |
[9] | SHAO Siyang, MA Xiang, YUAN Wei, ZHANG Kaiyu, FU Xiaofei, HUANG Chenhong. Robust Optimal Dispatching Method for Uncertain Microgrid Including Electric Vehicles [J]. Journal of Electrical Engineering, 2023, 18(2): 201-209. |
[10] | WEI Hongqian, ZHAO Wenqiang, AI Qiang, ZHANG Youtong, WANG Hongrong, LAI Chenguang, ZOU Xihong. Line-time-varying Model Predictive Active Safety Control of In-wheel Motor Driven Electric Vehicles [J]. Journal of Mechanical Engineering, 2023, 59(14): 190-201. |
[11] | SHEN Tong, YIN Guodong, REN Yanjun, WANG Fanxun, LIANG Jinhao, SHA Wenhan. Robust Adaptive ASR Control for In-wheel Motor Driving Electric Vehicle Considering Longitudinal Tire Lag [J]. Journal of Mechanical Engineering, 2023, 59(14): 222-236. |
[12] | LI Da, ZHANG Puchen, LIN Ni, ZHANG Zhaosheng, WANG Zhenpo, DENG Junjun. Safety Estimation Method of Electric System in Electric Vehicles Based on Multiple Model Coupling [J]. Journal of Mechanical Engineering, 2023, 59(12): 354-363. |
[13] | ZHAO Jingyu, XU Cheng, LI Xiaoyu. Electric Vehicle Energy Consumption Analysis and Prediction Based on Real-world Driving Data [J]. Journal of Mechanical Engineering, 2023, 59(10): 263-274. |
[14] | ZHOU Chenrui, SHENG Guangzong, LI Sheng. Multi-objective Optimal Dispatching of Microgrid Considering Electric Vehicle Integration [J]. Journal of Electrical Engineering, 2023, 18(1): 211-218. |
[15] | LIN Fen, CAI Yizhang, ZHAO Youqun, ZANG Liguo, WANG Shaobo. Lateral Stability Control of Distributed Drive Electric Vehicle with Mechanical Elastic Wheel [J]. Journal of Mechanical Engineering, 2022, 58(8): 236-243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||