Journal of Electrical Engineering ›› 2023, Vol. 18 ›› Issue (4): 378-388.doi: 10.11985/2023.04.040
LIU Yanli1(), ZHANG Xiaole1(
), LÜ Zhengyang1, XU Zhenhao1, LIU Yang2
Received:
2022-12-14
Revised:
2023-05-18
Online:
2023-12-25
Published:
2024-01-12
CLC Number:
LIU Yanli, ZHANG Xiaole, LÜ Zhengyang, XU Zhenhao, LIU Yang. Research on Intelligent Diagnosis and Route Selection Method of Multi-load Circuit Series Fault Arc[J]. Journal of Electrical Engineering, 2023, 18(4): 378-388.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
层类型 | 输出神经元 | 参数量 |
---|---|---|
卷积(32,11) | (None,2000,32) | 384 |
卷积(32,11) | (None,2000,32) | 11 296 |
最大池化 | (None,666,32) | 0 |
Dropout | (None,666,32) | 0 |
卷积(64,11) | (None,666,64) | 22 592 |
卷积(64,11) | (None,666,64) | 45 120 |
最大池化 | (None,222,64) | 0 |
Dropout | (None,222,64) | 0 |
卷积(128,11) | (None,222,128) | 90 240 |
卷积(128,11) | (None,222,128) | 180 352 |
最大池化 | (None,74,128) | 0 |
Dropuut | (None,74,128) | 0 |
卷积(256,11) | (None,74,256) | 360 704 |
卷积(256,11) | (None,74,256) | 721 152 |
Dropout | (None,74,256) | 0 |
平均池化 | (None,256) | 0 |
Dropout | (None,256) | 0 |
全连接 | (None,7) | 1 799 |
[1] | 崔芮华, 王洋, 王传宇, 等. 基于多信息融合的航空线路串联故障电弧识别方法[J]. 电工技术学报, 2019, 34(S1):118-125. |
CUI Ruihua, WANG Yang, WANG Chuanyu, et al. A method for recognizing series arc fault of aviation lines based on multi-information fusion[J]. Transactions of China Electrotechnical Society, 2019, 34(S1):118-125. | |
[2] | 郭凤仪, 高洪鑫, 唐爱霞, 等. 局部二值模式直方图匹配的串联故障电弧检测及选线[J]. 电工技术学报, 2020, 35(8):1653-1661. |
GUO Fengyi, GAO Hongxin, TANG Aixia, et al. Detectionand line selection of series fault arc based on local binary mode histogram matching[J]. Transactions of China Electrotechnical Society, 2020, 35(8):1653-1661. | |
[3] | 刘丽智, 刘艳丽, 殷煜炜, 等. 基于关联维数与小波包-AR谱的串联故障电弧特征研究[J]. 电子测量与仪器学报, 2018, 32(9):108-116. |
LIU Lizhi, LIU Yanli, YIN Yuwei, et al. Research on series fault arc characteristics based on correlation dimension and wavelet packet-AR spectrum[J]. Journal of Electronic Measurement and Instrument, 2018, 32(9):108-116. | |
[4] | 王毅, 陈进, 李松浓, 等. 基于时频域分析和随机森林的故障电弧检测[J]. 电子测量与仪器学报, 2021, 35(5):62-68. |
WANG Yi, CHEN Jin, LI Songnong, et al. Fault arc detection based on time-frequency domain analysis and random forest[J]. Journal of Electronic Measurement and Instrument, 2021, 35(5):62-68. | |
[5] | 谢国民, 刘宽. 基于形态学滤波和OTSU的串联故障电弧识别方法[J]. 电子测量与仪器学报, 2019, 33(5):46-56. |
XIE Guomin, LIU Kuan. A method of series fault arc recognition based on morphological filtering and OSTU[J]. Journal of Electronic Measurement and Instrument, 2019, 33(5):46-56. | |
[6] | 曾珂, 邢丽冬, 高杨, 等. 变频系统中交流电弧故障特性及检测技术[J]. 南京航空航天大学学报, 2020, 52(2):215-223. |
ZENG Ke, XING Lidong, GAO Yang, et al. AC arc fault characteristics and detection technology in frequency conversion system[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(2):215-223. | |
[7] | 赵怀军, 秦海燕, 刘凯, 等. 基于相关理论及零休特征融合的串联故障电弧检测方法[J]. 仪器仪表学报, 2020, 41(4):218-228. |
ZHAO Huaijun, QIN Haiyan, LIU Kai, et al. A series fault arc detection method based on related theories and zero-rest feature fusion[J]. Chinese Journal of Scientific Instrument, 2020, 41(4):218-228. | |
[8] | 唐圣学, 刁旭东, 陈丽, 等. 光伏发电系统直流串联微弱故障电弧检测方法研究[J]. 仪器仪表学报, 2021, 42(3):150-160. |
TANG Shengxue, DIAO Xudong, CHEN Li, et al. Research on detection method of weak fault arc in DC series of photovoltaic power generation system[J]. Chinese Journal of Scientific Instrument, 2021, 42(3):150-160. | |
[9] | 郭凤仪, 邓勇, 王智勇, 等. 基于灰度-梯度共生矩阵的串联故障电弧特征[J]. 电工技术学报, 2018, 33(1):71-81. |
GUO Fengyi, DENG Yong, WANG Zhiyong, et al. Characteristics of series fault arc based on gray-gradient co-occurrence matrix[J]. Transactions of China Electrotechnical Society, 2018, 33(1):71-81. | |
[10] | 余琼芳, 胡亚倩, 杨艺. 基于小波特征及深度学习的故障电弧检测[J]. 电子测量与仪器学报, 2020, 34(3):100-108. |
YU Qiongfang, HU Yaqian, YANG Yi. Arc fault detection based on wavelet features and deep learning[J]. Journal of Electronic Measurement and Instrument, 2020, 34(3):100-108. | |
[11] | 褚若波, 张认成, 杨凯, 等. 基于多层卷积神经网络的串联电弧故障检测方法[J]. 电网技术, 2020, 44(12):4792-4798. |
CHU Ruobo, ZHANG Rencheng, YANG Kai, et al. Series arc fault detection method based on multi-layer convolutional neural network[J]. Power System Technology, 2020, 44(12):4792-4798. | |
[12] | 余琼芳, 黄高路, 杨艺, 等. 基于AlexNet深度学习网络的串联故障电弧检测方法[J]. 电子测量与仪器学报, 2019, 33(3):145-152. |
YU Qiongfang, HUANG Gaolu, YANG Yi, et al. Series fault arc detection method based on AlexNet deep learning network[J]. Journal of Electronic Measurement and Instrument, 2019, 33(3):145-152. | |
[13] |
WANG Y, HOU L, PAUL K C, et al. Arcnet:Series AC arc fault detection based on raw current and convolutional neural network[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1):77-86.
doi: 10.1109/TII.2021.3069849 |
[14] | CHU R, ZHANG R, HUANG Q, et al. TDV-LSTM:A new methodology for series arc fault detection in low power ac systems[C]// 2020 IEEE Sustainable Power and Energy Conference (iSPEC), 2020:2319-2324. |
[15] |
HAN X, LI D, HUANG L, et al. Series arc fault detection method based on category recognition and artificial neural network[J]. Electronics, 2020, 9(9):1367.
doi: 10.3390/electronics9091367 |
[16] | 熊庆, 陈维江, 汲胜昌, 等. 低压直流系统故障电弧特性、检测和定位方法研究进展综述[J]. 中国电机工程学报, 2020, 40(18):6015-6027. |
XIONG Qing, CHEN Weijiang, JI Shengchang, et al. Summary of research progress on characteristics,detection and location methods of arc fault in low voltage DC system[J]. Proceedings of the CSEE, 2020, 40(18):6015-6027. | |
[17] | 白辉, 许志红. 基于小波包变换和高阶累积量的电弧故障识别方法[J]. 电力自动化设备, 2020, 40(11):195-202. |
BAI Hui, XU Zhihong. Arc fault identification method based on wavelet packet transform and high-order cumulant[J]. Electric Power Automation Equipment, 2020, 40(11):195-202. | |
[18] |
PAN J, ZI Y, CHEN J, et al. LiftingNet:A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6):4973-4982.
doi: 10.1109/TIE.41 |
[19] | SOHAIB M, KIM J M. A robust deep learning based fault diagnosis of rotary machine bearings[J]. Journal of Computational and Theoretical Nanoscience, 2017, 23(12):12797-12801. |
[20] | 喻后聃, 米秋实, 赵栋, 等. 基于一维卷积神经网络的光纤周界入侵模式识别[J]. 光子学报, 2021, 50(9):95-105. |
YU Houdan, MI Qiushi, ZHAO Dong, et al. Pattern recognition of fiber perimeter intrusion based on one-dimensional convolutional neural network[J]. Acta Photonica Sinica, 2021, 50(9):95-105. | |
[21] | 李美, 王一玮, 李林, 等. 绝缘气体对开关柜内部故障燃弧压力上升的影响[J]. 电气工程学报, 2020, 15(2):11-17. |
LI Mei, WANG Yiwei, LI Lin, et al. The influence of insulating gas on the rise of arcing pressure in the switchgear’s internal fault[J]. Journal of Electrical Engineering, 2020, 15(2):11-17. |
[1] | LI Xin, YANG Yu, CHENG Jian, CHENG Jun-sheng. Robustness Imbalanced Convex Hull-based Classification for Bevel Gearbox Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(8): 32-41. |
[2] | LI Xiang, FU Chunlin, LEI Yaguo, LI Naipeng, YANG Bin. Federated Transfer Learning Method for Privacy-preserving Collaborative Intelligent Machinery Fault Diagnostics [J]. Journal of Mechanical Engineering, 2023, 59(6): 1-9. |
[3] | HE Yunze, LI Xiang, WANG Hongjin, HOU Yuejun, ZHANG Fan, MU Xinying, LIU Hao, CHENG Hao, LI Shihua, LI Jie. A Review: Full-cycle Nondestructive Testing Based on Visible Light and Thermography of Wind Turbine Blade [J]. Journal of Mechanical Engineering, 2023, 59(6): 32-45. |
[4] | DAI Xianyang, CHEN Qian, SONG Xiangjin, LIU Zhengmeng, XU Gaohong. ITSC Fault Diagnosis for Five-phase Permanent Magnet Synchronous Motors Using Bayesian Optimization and Multiscale Convolutional Neural Network [J]. Journal of Electrical Engineering, 2023, 18(4): 114-123. |
[5] | SHAO Ningning, WANG Ying. Research on PSO-RBF Traction Transformer Fault Diagnosis Based on Adam Optimization [J]. Journal of Electrical Engineering, 2023, 18(4): 209-216. |
[6] | YU Cong, TANG Kaibo, LI Zhe, LIU Zhipeng, CHEN Bo, LIU Yuanchao, FANG Yaqi. GIS Equipment Fault Identification Based on BP Neural Network and Improved DS Evidence Fusion [J]. Journal of Electrical Engineering, 2023, 18(4): 361-369. |
[7] | Siti Nor Azlina M. Ghazali, Muhamad Zahim Sujod, Mohd Shawal Jadin. A Multi-scale Smart Fault Diagnosis Model Based on Waveform Length and Autoregressive Analysis for PV System Maintenance Strategies* [J]. Chinese Journal of Electrical Engineering, 2023, 9(3): 99-110. |
[8] | SHAO Haidong, XIAO Yiming, YAN Shen. Simulation Data-driven Enhanced Unsupervised Domain Adaptation for Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(3): 76-85. |
[9] | LIN Jing, JIAO Jinyang. Research Progress and Challenges of Interpretable Mechanical Intelligent Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(20): 215-224. |
[10] | YANG Shaopu, GU Xiaohui, LIU Yongqiang, DENG Feiyue, LIU Zechao, LIU Wenpeng, WANG Baosen. Review of Dynamic Mechanism and Fault Diagnosis for Key Rotating Components of Bogies [J]. Journal of Mechanical Engineering, 2023, 59(20): 225-243. |
[11] | ZHANG Han, TIAN Yi, DU Zhaohui. Time-varying Noise Structure Inspired Adaptive Weighted Sparse Model for Aero-engine Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(17): 162-174. |
[12] | ZHANG Zongzhen, WANG Jinrui, HAN Baokun, BAO Huaiqian, LI Shunming. Early Stage Fault Diagnosis Method of Bearings Based on Nonlinear Sparse Blind Deconvolution [J]. Journal of Mechanical Engineering, 2023, 59(16): 157-166. |
[13] | JIA Sixiang, SUN Dingyi, MAO Gang, LI Yongbo. Adversarial Entropy Based Fault Diagnosis Method for Rotor System Across Different Working Conditions [J]. Journal of Mechanical Engineering, 2023, 59(15): 110-120. |
[14] | KANG Jie, WANG Yin, LUO Jie, SUN Jiabao, ZENG Shuhong. Automated Operational Modal Analysis Method:A Survey [J]. Journal of Mechanical Engineering, 2023, 59(13): 89-109. |
[15] | WU Qiangewei, WEN Long. Union-adversarial Training for Deep Learning based on Surface Defect Detection [J]. Journal of Mechanical Engineering, 2023, 59(12): 173-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||