Journal of Electrical Engineering ›› 2022, Vol. 17 ›› Issue (4): 145-162.doi: 10.11985/2022.04.015
Previous Articles Next Articles
YU Zhongan(), CHEN Keyi(
), ZHANG Junling, HU Zezhou
Received:
2022-06-20
Revised:
2022-07-16
Online:
2022-12-25
Published:
2023-02-03
CLC Number:
YU Zhongan, CHEN Keyi, ZHANG Junling, HU Zezhou. Research Progress of Power Battery Cooling Technology[J]. Journal of Electrical Engineering, 2022, 17(4): 145-162.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
作者 | 电池阴极/阳极 | 放电电压范围/深度 | 循环倍率 | 循环次数 | 温度/℃ | 容量衰减(%) |
---|---|---|---|---|---|---|
RAMADASS等[ | C/LiCoO2 | 4.2~2.0 V | C/9~C/1 | 500 | 55 | 70.56 |
25 | 22.5 | |||||
800 | 45 | 36.21 | ||||
25 | 30.63 | |||||
ZHANG等[ | C/LiFePO4 | 3.6~2.0 V | 3C | 600 | 45 | 25.6 |
25 | 14.3 | |||||
0 | 15.5 | |||||
-10 | 20.3 | |||||
LIU等[ | C/LiFePO4 | 90%DOD | C/2 | 757 | 60 | 20.1 |
2 628 | 15 | 7.5 | ||||
50%DOD | C/2 | 1 376 | 45 | 22.1 | ||
JAGUEMONT等[ | C/LiFeMnPO4 | 60%DOD | 1C | 170 | 25 | 7 |
-20 | 20.8 | |||||
ZHENG等[ | C/LiFePO4 | 70%DOD | 1/3C | 100 | -10 | 12.77 |
100%DOD | 1C | 20 | 30.69 | |||
40 | 29.33 |
"
作者 | 冷却形式 | 电池材料 | 进风口速度/(m/s) | 最大放电倍率 | 环境温度/℃ | 最大温升/℃ | 最大温差/℃ |
---|---|---|---|---|---|---|---|
FAN等[ | 顺排 | 镍钴锰酸锂 电池 | 0.6~1 | 2C | 20 | 24 | 17 |
交错 | 27 | 11.5 | |||||
交叉 | 28 | 16 | |||||
FAN等[ | 串行通风 | 磷酸铁锂电池 | 5 | 1.5C | 21.8 | 2 | 1 |
CHEN等[ | 模型1 | 磷酸铁锂电池 | 0.015 | 5C | 25 | 38.25 | 9.7 |
模型2 | 34.35 | 5.3 | |||||
模型3 | 42.75 | 14.5 | |||||
模型4 | 35.65 | 5.8 | |||||
模型5 | 35.25 | 8.3 | |||||
模型6 | 34.25 | 5.1 | |||||
模型7 | 35.25 | 3.5 | |||||
模型8 | 38.25 | 9.5 | |||||
模型9 | 34.05 | 3.7 |
"
作者 | PCM材料 | 耦合冷却系统 | 电池材料 | 最大放电率 | 环境温度/℃ | 最大温升/℃ | 最大温差/℃ |
---|---|---|---|---|---|---|---|
HE等[ | 石蜡/膨胀石墨/泡沫铜 | 风冷 | 钴酸锂电池 | 5C | 25 | 23.0 | 3.9 |
HUANG等[ | 石蜡/膨胀石墨 | 风冷 | 镍钴锰锂电池 | 3C | 25 | 33.24 | 4.74 |
QIN等[ | 石蜡/泡沫铝 | 风冷 | 18650锂电池 | 4C | 25 | 17 | 9.5 |
HEKMAT等[ | 聚乙二醇1000 | 液冷 | 锂电池 | 0.9C | 28 | 2 | 0.6 |
KONG等[ | 石蜡 | 液冷 | 镍钴锰锂电池 | 3C | 30 | 11.1 | 4 |
PING等[ | 膨胀石墨 | 液冷 | 磷酸铁锂电池 | 3C | 40 | 7.6 | 4.5 |
ZHANG等[ | 石蜡/泡沫铜 | 热管 | 磷酸铁锂电池 | 5C | 30 | 18.8 | 4 |
JIANG等[ | 石蜡/膨胀石墨 | 热管 | 磷酸铁锂电池 | 1.92C | 40 | 7.9 | 2.6 |
WANG等[ | 石蜡 | 热管 | — | 30 W | 25 | 20.56 | — |
[1] | 李正烁, 孙宏斌, 郭庆来, 等. 计及碳排放的输电网侧“风-车协调”研究[J]. 中国电机工程学报, 2012, 32(10):41-48. |
LI Zhengshuo, SUN Hongbin, GUO Qinglai, et al. Research on “wind-vehicle coordination” on the transmission grid side considering carbon emissions[J]. Proceedings of the CSEE, 2012, 32(10):41-48. | |
[2] | 孟欣. 纯电动汽车的应用及发展概述[J]. 科技广场, 2010(7):147-149. |
MENG Xin. An overview of the application and development of pure electric vehicles[J]. Science and Technology Plaza, 2010(7):147-149. | |
[3] |
SASAKI T, UKYO Y, NOVAK P. Memory effect in a lithium-ion battery[J]. Nature Materials, 2013, 12(6):569-575.
doi: 10.1038/nmat3623 pmid: 23584142 |
[4] | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy & Environmental Science, 2011, 4:3243-3262. |
[5] | 蔡敏怡, 张娥, 林靖, 等. 串联锂离子电池组均衡拓扑综述[J]. 中国电机工程学报, 2021, 41(15):5294-5311. |
CAI Minyi, ZHANG E, LIN Jing, et al. A review of the equilibrium topology of lithium-ion battery packs in series[J]. Proceedings of the CSEE, 2021, 41(15):5294-5311. | |
[6] |
ZHANG S S, XU K, JOW T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1):137-140.
doi: 10.1016/S0378-7753(02)00618-3 |
[7] | PESARAN A. Battery thermal management in EVs and HEVs:Issues and solutions[J]. Battery Man, 2001, 43(5):34-49. |
[8] |
RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis[J]. Journal of Power Sources, 2002, 112(2):614-620.
doi: 10.1016/S0378-7753(02)00473-1 |
[9] |
BANDHAUER T, GARIMELLA S, FULLER T. A critical review of thermal issues in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2011, 158(3):R1.
doi: 10.1149/1.3515880 |
[10] |
YANG Z, PATIL D, FAHIMI B. Online estimation of capacity fade and power fade of lithium-ion batteries based on input-output response technique[J]. IEEE Transactions on Transportation Electrification, 2017, 4(1):147-156.
doi: 10.1109/TTE.2017.2775801 |
[11] | ZHANG Yancheng, WANG Chaoyang, TANG Xidong. Cycling degradation of an automotive LiFePO4lithium-ion battery[J]. Journal of Power Sources, 2011, 196(3):0378-7753. |
[12] |
LIU P, JOHN W, JOCELYN H, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of The Electrochemical Society, 2010, 157(4):A499.
doi: 10.1149/1.3294790 |
[13] |
JAGUEMONT J, BOULON L, VENET P, et al. Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6):4328-4343.
doi: 10.1109/TVT.2015.2473841 |
[14] |
ZHENG Yong, HE Yanbing, QIAN Kun, et al. Influence of charge rate on the cycling degradation of LiFePO4/mesocarbon microbead batteries under low temperature[J]. Ionics, 2017, 23:1967-1978.
doi: 10.1007/s11581-017-2032-y |
[15] |
WU Weixiong, WANG Shuangfeng, CHEN Kai, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182:262-281.
doi: 10.1016/j.enconman.2018.12.051 |
[16] | COSLEY R M, GARCIA M P. Battery thermal management system[C]// INTELEC 2004. 26th Annual International Telecommunications Energy Conference, 2004:38-45. |
[17] |
KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149:192-212.
doi: 10.1016/j.applthermaleng.2018.12.020 |
[18] |
WANG Zichen, DU Changqing. A comprehensive review on thermal management systems for power lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 139:110685.
doi: 10.1016/j.rser.2020.110685 |
[19] | PRAJAPATI S, UPADHYAY Y, KUMAR Y, et al. Investigation of thermal management system of a lithium-ion battery in electric vehicle[J]. Materialstoday:Proceedings, 2022, 56(5):A1-A6. |
[20] |
XIA Guodong, CAO Lei, BI Guanglong. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367:90-105.
doi: 10.1016/j.jpowsour.2017.09.046 |
[21] | 刘晓东. 高倍率软包锂离子电池产热模型及热管理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
LIU Xiaodong. Research on heat production model and thermal management of high-rate soft-pack lithium-ion battery[D]. Harbin: Harbin Institute of Technology, 2021. | |
[22] | 姜贵文, 李敬会, 黄菊花, 等. 相变材料和液冷耦合散热的锂电池热管理研究[J]. 电源技术, 2018, 42(10):1462-1465,1485. |
JIANG Guiwen, LI Jinghui, HUANG Hua, et al. Thermal management of lithium battery with phase change material and liquid-cooling coupling heat dissipation[J]. Chinese Journal of Power Sources, 2018, 42(10):1462-1465,1485. | |
[23] |
BARCELLONA S, PIEGARI L. Integrated electro-thermal model for pouch lithium ion batteries[J]. Mathematics and Computers in Simulation, 2020, 183:5-19.
doi: 10.1016/j.matcom.2020.03.010 |
[24] | PESARAN A, KIM G H. Battery thermal management system design modeling[R]. National Renewable Energy Lab.(NREL),Golden,CO (United States), 2006. |
[25] |
CHIEW J, CHIN C S, TOH W D, et al. A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 147:450-463.
doi: 10.1016/j.applthermaleng.2018.10.108 |
[26] | LI Junqiu, SUN Danni, JIN Xin, et al. Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation[J]. Applied Energy, 2019, 254:113574.1-113574.12. |
[27] |
LIANG Jialin, GAN Yunhua, SONG Weifeng, et al. Thermal-electrochemical simulation of electrochemical characteristics and temperature difference for a battery module under two-stage fast charging[J]. The Journal of Energy Storage, 2020, 29:101307.
doi: 10.1016/j.est.2020.101307 |
[28] |
CHIN C S, GAO Zuchang, ZHANG Caizhi. Comprehensive electro-thermal model of 26650 lithium battery for discharge cycle under parametric and temperature variations[J]. The Journal of Energy Storage, 2020, 28(1):101222.
doi: 10.1016/j.est.2020.101222 |
[29] |
XIE Yi, ZHENG Jintao, HU Xiaosong, et al. An improved resistance-based thermal model for prismatic lithium-ion battery charging[J]. Applied Thermal Engineering, 2020, 180(4):115794.
doi: 10.1016/j.applthermaleng.2020.115794 |
[30] |
JOHNSON V H. Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 110(2):321-329.
doi: 10.1016/S0378-7753(02)00194-5 |
[31] |
KIM G H, PESARAN A, SPOTNITZ R. Three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2):476-489.
doi: 10.1016/j.jpowsour.2007.04.018 |
[32] | 眭艳辉, 王文, 夏保佳, 等. 混合动力汽车动力电池组散热特性实验研究[J]. 制冷技术, 2009, 29(2):16-21. |
SUI Yanhui, WANG Wen, XIA Baojia, et al. Experimental research on heat dissipation characteristics of hybrid electric vehicle power battery pack[J]. Refrigeration Technology, 2009, 29(2):16-21. | |
[33] |
FAN Yuqian, BAO Yun, LING Chen, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155:96-109.
doi: 10.1016/j.applthermaleng.2019.03.157 |
[34] |
HE Fan, LI Xuesong, MA Lin. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72:622-629.
doi: 10.1016/j.ijheatmasstransfer.2014.01.038 |
[35] |
CHEN Kai, WU Weixiong, YUAN Fang, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167:781-790.
doi: 10.1016/j.energy.2018.11.011 |
[36] | 眭艳辉. 混合动力车用镍氢电池组散热结构研究[D]. 上海: 上海交通大学, 2009. |
SUI Yanhui. Research on heat dissipation structure of nickel metal hydride battery pack for hybrid electric vehicle[D]. Shanghai: Shanghai Jiao Tong University, 2009. | |
[37] | PESARAN A A. Battery thermal management in EVs and HEVs:Issues and solutions[C]// Adv. Automotive Battery Conf,Las Vegas,Nevada,Feb. 6-8, 2001. |
[38] | HIRANO H, TAJIMA T, HASEGAWA T, et al. Boiling liquid battery cooling for electric vehicle[C]// 2014 IEEE Conference and Expo. Transportation Electrification,Asia-Pacific (ITEC Asia-Pacific)August 31-September 03,2014,Beijing,China. IEEE, 2014:1-4. |
[39] | GILS R W V, DANILOV D, NOTTEN P H L, et al. Battery thermal management by boiling heat-transfer[J]. Energy Conversion & Management, 2014, 79:9-17. |
[40] | RONNING J J, BROWN R K. Battery cooling apparatus for electric vehicle:US,20140038010[P]. 2014-02-06. |
[41] |
HUO Yutao, RAO Zhonghao, LIU Xinjian, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89:387-395.
doi: 10.1016/j.enconman.2014.10.015 |
[42] |
JARRETT A, KIM I Y. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245:644-655.
doi: 10.1016/j.jpowsour.2013.06.114 |
[43] |
JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113:1786-1794.
doi: 10.1016/j.apenergy.2013.07.013 |
[44] |
TETE P R, GUPTA M M, JOSHI S S. Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct[J]. Journal of Energy Storage, 2022, 48:104041.
doi: 10.1016/j.est.2022.104041 |
[45] |
TANG Xingwang, GUO Qin, LI Ming, et al. Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning[J]. Journal of Power Sources, 2021, 494(1):229727.
doi: 10.1016/j.jpowsour.2021.229727 |
[46] | KRÜGER I L, SCHMITZ G. Energy consumption of battery cooling in hybrid electric vehicles[C]// International Refrigeration and Air Conditioning Conference at Purdue, July 16-19,2012, 2334:1-10. |
[47] |
XIE Lin, HUANG Yingxia, LAI Huanxin. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module[J]. Applied Thermal Engineering, 2020, 178:115599.
doi: 10.1016/j.applthermaleng.2020.115599 |
[48] |
LIU Zhengyu, WANG Hao, YANG Chao, et al. Simulation study of lithium-ion battery thermal management system based on a variable flow velocity method with liquid metal[J]. Applied Thermal Engineering, 2020, 179(3):115578.
doi: 10.1016/j.applthermaleng.2020.115578 |
[49] | 张国庆, 吴忠杰, 饶中浩, 等. 动力电池热管冷却效果实验[J]. 化工进展, 2009, 28(7):1165-1168,1174. |
ZHANG Guoqing, WU Zhongjie, RAO Zhonghao, et al. Experiment on cooling effect of power battery heat pipe[J]. Progress in Chemical Industry, 2009, 28(7):1165-1168,1174. | |
[50] | 张文明. 重力热管抽油杆室内实验研究[D]. 大庆: 大庆石油学院, 2008. |
ZHANG Wenming. Indoor experiment research of gravity heat pipe sucker rod[D]. Daqing: Daqing Petroleum Institute, 2008. | |
[51] |
ABDELKAREEM M A, MAGHRABIE H M, SAYED E T, et al. Heat pipe-based waste heat recovery systems:Background and applications[J]. Thermal Science and Engineering Progress, 2022, 29:101221.
doi: 10.1016/j.tsep.2022.101221 |
[52] | 钟名湖. 新型双向阀门可控热导热管研究[J]. 现代雷达, 2012, 34(1):82-85. |
ZHONG Minghu. Research on a new type of two-way valve controllable thermal heat pipe[J]. Modern Radar, 2012, 34(1):82-85. | |
[53] | 陈彦泽, 喻建良, 丁信伟. 热管技术及其应用[J]. 现代化工, 2003(4):17-19,28. |
CHEN Yanze, YU Jianliang, DING Xinwei. Heat pipe technology and its application[J]. Modern Chemical Industry, 2003(4):17-19,28. | |
[54] | 曹丽召. 重力热管流动与传热特性的数值模拟[D]. 北京: 中国石油大学, 2009. |
CAO Lizhao. Numerical simulation of flow and heat transfer characteristics of gravity heat pipes[D]. Beijing: China University of Petroleum, 2009. | |
[55] | 马永昌. 热管技术的原理应用与发展[C]// 2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集, 2008:46. |
MA Yongchang. The principle application and development of heat pipe technology[C]// 2008 Abstracts of the 11th Annual Academic Conference of the Power Electronics Society of China Electrotechnical Society, 2008:46. | |
[56] | 王春娟. 烧结式热管吸附床的结构设计及实验研究[D]. 大连: 大连海事大学, 2011. |
WANG Chunjuan. Structural design and experimental research of sintered heat pipe adsorption bed[D]. Dalian: Dalian Maritime University, 2011. | |
[57] | 于涛. 重力热管的制造及传热性能测试[D]. 山东: 山东大学, 2008. |
YU Tao. Manufacture and heat transfer performance test of gravity heat pipe[D]. Shandong: Shandong University, 2008. | |
[58] | 郑攀. 应用于太阳能空调的中温热管研究[D]. 武汉: 华中科技大学, 2008. |
ZHENG Pan. Research on medium temperature heat pipe applied to solar air conditioner[D]. Wuhan: Huazhong University of Science and Technology, 2008. | |
[59] |
TRAN T H, HARMAND S, DESMET B, et al. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery[J]. Applied Thermal Engineering, 2014, 63:551-558.
doi: 10.1016/j.applthermaleng.2013.11.048 |
[60] | 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013. |
RAO Zhonghao. Research on thermal management of power battery based on solid-liquid phase change heat transfer medium[D]. Guangzhou: South China University of Technology, 2013. | |
[61] |
MAYDANIK Y F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25:635-657.
doi: 10.1016/j.applthermaleng.2004.07.010 |
[62] |
汤勇, 唐恒, 万珍平, 等. 超薄微热管的研究现状及发展趋势[J]. 机械工程学报, 2017, 53(20):131-144.
doi: 10.3901/JME.2017.20.131 |
TANG Yong, TANG Heng, WAN Zhenping, et al. Research status and development trend of ultra-thin micro heat pipes[J]. Journal of Mechanical Engineering, 2017, 53(20):131-144.
doi: 10.3901/JME.2017.20.131 |
|
[63] | 林梓荣, 汪双凤, 吴小辉. 脉动热管技术研究进展[J]. 化工进展, 2008(10):1526-1532. |
LIN Zirong, WANG Shuangfeng, WU Xiaohui. Research progress of pulsating heat pipe technology[J]. Progress in Chemical Industry, 2008(10):1526-1532. | |
[64] | JAGUEMONT J, OMAR N, BOSSCHE P, et al. Phase-change materials (PCM) for automotive applications:A review[J]. Applied Thermal Engineering:Design, Processes,Equipment,Economics, 2018, 132:308-320. |
[65] |
HEYHAT M M, MOUSAVI S, SIAVASHI M. Battery thermal management with thermal energy storage composites of PCM,metal foam,fin and nanoparticle[J]. Journal of Energy Storage, 2020, 28:101235.
doi: 10.1016/j.est.2020.101235 |
[66] | ZHANG Jiangyun, LI Xinxi, ZHANG Guoqing, et al. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system[J]. Power Sources, 2020(480):229116. |
[67] |
LING Ziye, LI Suimin, CAI Chuyue, et al. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J]. Applied Thermal Engineering, 2021, 193:117002.
doi: 10.1016/j.applthermaleng.2021.117002 |
[68] |
WU Niuniu, LIU Lijie, YANG Zhiwei, et al. Design of eutectic hydrated salt composite phase change material with cement for thermal energy regulation of buildings[J]. Materials, 2021, 14(1):139.
doi: 10.3390/ma14010139 |
[69] | 次恩达, 王会, 李晓卿, 等. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1):30-37. |
CI Enda, WANG Hui, LI Xiaoqing, et al. Preparation and performance enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic salt/expanded graphite composite phase change material[J]. Energy Storage Science and Technology, 2022, 11(1):30-37. | |
[70] | QIN Peng, LIAO Mengran, ZHANG Danfeng, et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material[J]. Energy Conversion & Management, 2019, 195:1371-1381. |
[71] |
HE Jieshan, YANG Xiaoqing, ZHANG Guoqing. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management[J]. Applied Thermal Engineering, 2019, 148:984-991.
doi: 10.1016/j.applthermaleng.2018.11.100 |
[72] |
HUANG Hongfei, WANG Hu, GU Jinqing, et al. High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries[J]. Energy Conversion and Management, 2019, 190:54-72.
doi: 10.1016/j.enconman.2019.04.013 |
[73] |
HEKMAT S, MOLAEIMANESH G R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes:An experimental investigation[J]. Applied Thermal Engineering, 2019, 166:114759.
doi: 10.1016/j.applthermaleng.2019.114759 |
[74] | KONG Depeng, PENG Rongqi, PING Ping, et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures[J]. Energy Conversion and Management, 2019:112280. |
[75] | PING Ping, ZHANG Yue, KONG Depeng, et al. Investigation on battery thermal management system combining phase changed material and liquid cooling consid- ering non-uniform heat generation of battery[J]. Energy Storage, 2021(36):102448. |
[76] |
ZHANG Wencan, QIU Jieyu, YIN Xiuxing, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2019, 165:114571.
doi: 10.1016/j.applthermaleng.2019.114571 |
[77] |
JIANG Zhiyuan, QU Zhiguo. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle:A comprehensive numerical study[J]. Applied Energy, 2019, 242:378-392.
doi: 10.1016/j.apenergy.2019.03.043 |
[78] |
WANG Qingchao, RAO Zhonghao, HUO Yutao, et al. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system[J]. International Journal of Thermal Sciences, 2016, 102:9-16.
doi: 10.1016/j.ijthermalsci.2015.11.005 |
[79] |
LIU Huaqiang, WEI Zhongbao, HE Weidong, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J]. Energy Conversion and Management, 2017, 150:304-330.
doi: 10.1016/j.enconman.2017.08.016 |
[1] | LIU Jiahao, MA Qingwen. Hybrid Battery Thermal Management System with New Fins Added to Immersion Cooling [J]. Journal of Electrical Engineering, 2022, 17(4): 113-121. |
[2] | JIN Tan, MA Xin, HU Hao, QU Meina, SHANG Zhentao. Inverse Approach to Derive the Distribution of Convection Heat Transfer Coefficient of Grinding Fluid within Grinding Zone for Deep Grinding of Nickel Based Super Alloy [J]. Journal of Mechanical Engineering, 2022, 58(15): 55-62. |
[3] | XIAO Xi, TIAN Peigen, YU Lu, WU Yan, CI Song, ZHU Maoyu. Status and Prospect of Safety Studies of Cascade Power Battery Energy Storage System [J]. Journal of Electrical Engineering, 2022, 17(1): 206-224. |
[4] | WANG Yabo, ZHU Xinlin, LI Xueqiang, LIU Shengchun, LI Hailong, XIONG Rui. Analysis of Influencing Factors of Battery Cabinet Heat Dissipation in Electrochemical Energy Storage System [J]. Journal of Electrical Engineering, 2022, 17(1): 225-233. |
[5] | CHEN Zeyu, XIONG Rui, LI Shijie, ZHANG Bo. Extremely Fast Heating Method of the Lithium-ion Battery at Cold Climate for Electric Vehicle [J]. Journal of Mechanical Engineering, 2021, 57(4): 113-120. |
[6] | Xiao Chen, Jiabin Wang, Antonio Griffo, Liang Chen. Evaluation of Waste Heat Recovery of Electrical Powertrain with Electro-thermally Coupled Models for Electric Vehicle Applications* [J]. Chinese Journal of Electrical Engineering, 2021, 7(3): 88-99. |
[7] | LU Zhongliang, LI Jian, LI Sai, MIAO Kai, LOU Xiaojie, LI Dichen. Research Progress in Design and Manufacture of Graphene 3D Electrodes Based on 3D Printing Technology [J]. Journal of Mechanical Engineering, 2021, 57(23): 169-181. |
[8] | CHEN Zeyu, ZHANG Bo, XIONG Rui, LI Shijie. Modeling Analysis of Heating Consistency and Influencing Factors of Low-temperature Extreme-speed Self-heating System of Battery [J]. Journal of Mechanical Engineering, 2021, 57(22): 226-236. |
[9] | CAI Xue, ZHANG Caiping, ZHANG Linjing, ZHANG Weige, GAO Le. Comparative Study on State of Power Estimation of Lithium Ion Battery Based on Equivalent Circuit Model [J]. Journal of Mechanical Engineering, 2021, 57(14): 64-76. |
[10] | WU Zhengren, ZHEN Meng, LIU Mei, WANG Songling, LIU Qiusheng. Numerical Simulation of Heat Transfer Characteristics of Spray Swirling Nozzle Under Pressure [J]. Journal of Mechanical Engineering, 2019, 55(4): 172-180. |
[11] | YANG Min, LI Changhe, ZHANG Yanbin, WANG Yaogang, LI Benkai, LI Runze. Theoretical Analysis and Experimental Research on Temperature Field of Microscale Bone Grinding under Nanoparticle Jet Mist Cooling [J]. Journal of Mechanical Engineering, 2018, 54(18): 194-203. |
[12] | XU Xiangguo, ZHAN Sicheng, LIANG Haobin, WANG Xiaofei, ZHONG Ziwen. XU Xiangguo1, 2 ZHAN Sicheng1, 2 LIANG Haobin1, 2 WANG Xiaofei1, 2 ZHONG Ziwen1, 2 [J]. Journal of Mechanical Engineering, 2017, 53(4): 122-133. |
[13] | ZHANG Lixiu, LI Chaoqun, LI Jinpeng, ZHANG Ke, WU Yuhou. The Temperature Prediction Mode of High Speed and High Precision Motorized Spindle [J]. Journal of Mechanical Engineering, 2017, 53(23): 129-136. |
[14] | Ding Jie,Zhang Ping. Fast Calculation of Transient Temperature Field for Thyristor Module [J]. Journal of Electrical Engineering, 2016, 11(12): 37-44. |
[15] | LI Xun;YANG Bo;ZHAO Jun;GUO Shaopeng. Experimental Study on Heat Transfer Enhancement of Heat Exchanger in Indirect Mobilized Thermal Energy Storage System with Fins [J]. , 2013, 49(8): 165-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||